Browse Source

[DOCS] Clarifies description of num_top_feature_importance_values (#52246)

Co-Authored-By: Valeriy Khakhutskyy <1292899+valeriy42@users.noreply.github.com>
Lisa Cawley 5 years ago
parent
commit
f41ebe47e3

+ 8 - 2
docs/reference/ml/df-analytics/apis/put-dfanalytics.asciidoc

@@ -150,7 +150,10 @@ include::{docdir}/ml/ml-shared.asciidoc[tag=randomize-seed]
 
 
 `analysis`.`classification`.`num_top_feature_importance_values`::::
 `analysis`.`classification`.`num_top_feature_importance_values`::::
 (Optional, integer)
 (Optional, integer)
-include::{docdir}/ml/ml-shared.asciidoc[tag=num-top-feature-importance-values]
+Advanced configuration option. Specifies the maximum number of
+{ml-docs}/dfa-classification.html#dfa-classification-feature-importance[feature
+importance] values per document to return. By default, it is zero and no feature importance
+calculation occurs.
 
 
 `analysis`.`classification`.`training_percent`::::
 `analysis`.`classification`.`training_percent`::::
 (Optional, integer)
 (Optional, integer)
@@ -233,7 +236,10 @@ include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name]
 
 
 `analysis`.`regression`.`num_top_feature_importance_values`::::
 `analysis`.`regression`.`num_top_feature_importance_values`::::
 (Optional, integer)
 (Optional, integer)
-include::{docdir}/ml/ml-shared.asciidoc[tag=num-top-feature-importance-values]
+Advanced configuration option. Specifies the maximum number of
+{ml-docs}/dfa-regression.html#dfa-regression-feature-importance[feature importance] 
+values per document to return. By default, it is zero and no feature importance calculation
+occurs.
 
 
 `analysis`.`regression`.`training_percent`::::
 `analysis`.`regression`.`training_percent`::::
 (Optional, integer)
 (Optional, integer)

+ 0 - 7
docs/reference/ml/ml-shared.asciidoc

@@ -906,13 +906,6 @@ total number of categories (in the {version} version of the {stack}, it's two)
 to predict then we will report all category probabilities. Defaults to 2.
 to predict then we will report all category probabilities. Defaults to 2.
 end::num-top-classes[]
 end::num-top-classes[]
 
 
-tag::num-top-feature-importance-values[]
-Advanced configuration option. If set, feature importance for the top
-most important features will be computed. Importance is calculated
-using the SHAP (SHapley Additive exPlanations) method as described in
-https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf[Lundberg, S. M., & Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In NeurIPS 2017.].
-end::num-top-feature-importance-values[]
-
 tag::over-field-name[]
 tag::over-field-name[]
 The field used to split the data. In particular, this property is used for 
 The field used to split the data. In particular, this property is used for 
 analyzing the splits with respect to the history of all splits. It is used for 
 analyzing the splits with respect to the history of all splits. It is used for