这是elasticsearch的镜像仓库,每日同步一次

Simon Willnauer 2b730d1b9d Mute MovAvgIT#testHoltWintersNotEnoughData 7 years ago
.ci 92a48fa6b8 Add script to cache dependencies (#33726) 7 years ago
.github 80620bd086 Add version command to issue template 8 years ago
benchmarks 7f7e8fd733 Disable assemble task instead of removing it (#33348) 7 years ago
buildSrc b654d986d7 Add OneStatementPerLineCheck to Checkstyle rules (#33682) 7 years ago
client ddce9704d4 Logging: Drop two deprecated methods (#34055) 7 years ago
dev-tools 3428dc20a4 Improve release notes script (#31833) 7 years ago
distribution c01b6ffb80 CRUD: Fix wait for refresh tests (#33973) 7 years ago
docs 7bf216f4a1 [Docs] Add reason to use Settings API over config file (#32405) 7 years ago
gradle 9c541b8f72 Upgrade to latest Gradle 4.10 (#32801) 7 years ago
libs 80c5d30f30 XContentBuilder to handle BigInteger and BigDecimal (#32888) 7 years ago
licenses 0d8aa7527e Reorganize license files 7 years ago
modules 85e4ef3429 Scripting: Reflect factory signatures in painless classloader (#34088) 7 years ago
plugins de8bfb908f Delegate wildcard query creation to MappedFieldType. (#34062) 7 years ago
qa ddce9704d4 Logging: Drop two deprecated methods (#34055) 7 years ago
rest-api-spec 80c5d30f30 XContentBuilder to handle BigInteger and BigDecimal (#32888) 7 years ago
server 2b730d1b9d Mute MovAvgIT#testHoltWintersNotEnoughData 7 years ago
test ddce9704d4 Logging: Drop two deprecated methods (#34055) 7 years ago
x-pack a48b86e7c6 Security: use default scroll keepalive (#33639) 7 years ago
.dir-locals.el 989da585b2 Go back to 140 column limit in .dir-locals.el 8 years ago
.editorconfig 18e969e161 Add simple EditorConfig 10 years ago
.gitattributes 3e7fccddaf Add a CHANGELOG file for release notes. (#29450) 7 years ago
.gitignore a740b542e5 Cleanup .gitignore (#30145) 7 years ago
CONTRIBUTING.md c41c614527 Fix grammar in contributing docs 7 years ago
LICENSE.txt 0d8aa7527e Reorganize license files 7 years ago
NOTICE.txt 4310ef0be6 [Docs] Update Copyright notices to 2018 (#29404) 7 years ago
README.textile 736d2e8a65 Docs: Fix README upgrade mention (#32313) 7 years ago
TESTING.asciidoc 6646bcb065 [DOCS] Fix list formatting in TESTING.asciidoc (#33889) 7 years ago
Vagrantfile 16fe22047e Revert "[test] turn on host io cache for opensuse (#32053)" 7 years ago
build.gradle 92a48fa6b8 Add script to cache dependencies (#33726) 7 years ago
gradle.properties 309fb22181 Build: forked compiler max memory matches jvmArgs (#33138) 7 years ago
gradlew a799939630 Revert "Build: Move gradle wrapper jar to a dot dir (#30146)" 7 years ago
gradlew.bat a799939630 Revert "Build: Move gradle wrapper jar to a dot dir (#30146)" 7 years ago
settings.gradle a9a66a09dc Build: Line up IDE detection logic 7 years ago

README.textile

h1. Elasticsearch

h2. A Distributed RESTful Search Engine

h3. "https://www.elastic.co/products/elasticsearch":https://www.elastic.co/products/elasticsearch

Elasticsearch is a distributed RESTful search engine built for the cloud. Features include:

* Distributed and Highly Available Search Engine.
** Each index is fully sharded with a configurable number of shards.
** Each shard can have one or more replicas.
** Read / Search operations performed on any of the replica shards.
* Multi Tenant.
** Support for more than one index.
** Index level configuration (number of shards, index storage, ...).
* Various set of APIs
** HTTP RESTful API
** Native Java API.
** All APIs perform automatic node operation rerouting.
* Document oriented
** No need for upfront schema definition.
** Schema can be defined for customization of the indexing process.
* Reliable, Asynchronous Write Behind for long term persistency.
* (Near) Real Time Search.
* Built on top of Lucene
** Each shard is a fully functional Lucene index
** All the power of Lucene easily exposed through simple configuration / plugins.
* Per operation consistency
** Single document level operations are atomic, consistent, isolated and durable.

h2. Getting Started

First of all, DON'T PANIC. It will take 5 minutes to get the gist of what Elasticsearch is all about.

h3. Requirements

You need to have a recent version of Java installed. See the "Setup":http://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html#jvm-version page for more information.

h3. Installation

* "Download":https://www.elastic.co/downloads/elasticsearch and unzip the Elasticsearch official distribution.
* Run @bin/elasticsearch@ on unix, or @bin\elasticsearch.bat@ on windows.
* Run @curl -X GET http://localhost:9200/@.
* Start more servers ...

h3. Indexing

Let's try and index some twitter like information. First, let's index some tweets (the @twitter@ index will be created automatically):


curl -XPUT 'http://localhost:9200/twitter/doc/1?pretty' -H 'Content-Type: application/json' -d '
{
"user": "kimchy",
"post_date": "2009-11-15T13:12:00",
"message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/twitter/doc/2?pretty' -H 'Content-Type: application/json' -d '
{
"user": "kimchy",
"post_date": "2009-11-15T14:12:12",
"message": "Another tweet, will it be indexed?"
}'

curl -XPUT 'http://localhost:9200/twitter/doc/3?pretty' -H 'Content-Type: application/json' -d '
{
"user": "elastic",
"post_date": "2010-01-15T01:46:38",
"message": "Building the site, should be kewl"
}'


Now, let's see if the information was added by GETting it:


curl -XGET 'http://localhost:9200/twitter/doc/1?pretty=true'
curl -XGET 'http://localhost:9200/twitter/doc/2?pretty=true'
curl -XGET 'http://localhost:9200/twitter/doc/3?pretty=true'


h3. Searching

Mmm search..., shouldn't it be elastic?
Let's find all the tweets that @kimchy@ posted:


curl -XGET 'http://localhost:9200/twitter/_search?q=user:kimchy&pretty=true'


We can also use the JSON query language Elasticsearch provides instead of a query string:


curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
"query" : {
"match" : { "user": "kimchy" }
}
}'


Just for kicks, let's get all the documents stored (we should see the tweet from @elastic@ as well):


curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
"query" : {
"match_all" : {}
}
}'


We can also do range search (the @post_date@ was automatically identified as date)


curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
"query" : {
"range" : {
"post_date" : { "from" : "2009-11-15T13:00:00", "to" : "2009-11-15T14:00:00" }
}
}
}'


There are many more options to perform search, after all, it's a search product no? All the familiar Lucene queries are available through the JSON query language, or through the query parser.

h3. Multi Tenant - Indices and Types

Man, that twitter index might get big (in this case, index size == valuation). Let's see if we can structure our twitter system a bit differently in order to support such large amounts of data.

Elasticsearch supports multiple indices. In the previous example we used an index called @twitter@ that stored tweets for every user.

Another way to define our simple twitter system is to have a different index per user (note, though that each index has an overhead). Here is the indexing curl's in this case:


curl -XPUT 'http://localhost:9200/kimchy/doc/1?pretty' -H 'Content-Type: application/json' -d '
{
"user": "kimchy",
"post_date": "2009-11-15T13:12:00",
"message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/kimchy/doc/2?pretty' -H 'Content-Type: application/json' -d '
{
"user": "kimchy",
"post_date": "2009-11-15T14:12:12",
"message": "Another tweet, will it be indexed?"
}'


The above will index information into the @kimchy@ index. Each user will get their own special index.

Complete control on the index level is allowed. As an example, in the above case, we would want to change from the default 5 shards with 1 replica per index, to only 1 shard with 1 replica per index (== per twitter user). Here is how this can be done (the configuration can be in yaml as well):


curl -XPUT http://localhost:9200/another_user?pretty -H 'Content-Type: application/json' -d '
{
"index" : {
"number_of_shards" : 1,
"number_of_replicas" : 1
}
}'


Search (and similar operations) are multi index aware. This means that we can easily search on more than one
index (twitter user), for example:


curl -XGET 'http://localhost:9200/kimchy,another_user/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
"query" : {
"match_all" : {}
}
}'


Or on all the indices:


curl -XGET 'http://localhost:9200/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
"query" : {
"match_all" : {}
}
}'


{One liner teaser}: And the cool part about that? You can easily search on multiple twitter users (indices), with different boost levels per user (index), making social search so much simpler (results from my friends rank higher than results from friends of my friends).

h3. Distributed, Highly Available

Let's face it, things will fail....

Elasticsearch is a highly available and distributed search engine. Each index is broken down into shards, and each shard can have one or more replicas. By default, an index is created with 5 shards and 1 replica per shard (5/1). There are many topologies that can be used, including 1/10 (improve search performance), or 20/1 (improve indexing performance, with search executed in a map reduce fashion across shards).

In order to play with the distributed nature of Elasticsearch, simply bring more nodes up and shut down nodes. The system will continue to serve requests (make sure you use the correct http port) with the latest data indexed.

h3. Where to go from here?

We have just covered a very small portion of what Elasticsearch is all about. For more information, please refer to the "elastic.co":http://www.elastic.co/products/elasticsearch website. General questions can be asked on the "Elastic Discourse forum":https://discuss.elastic.co or on IRC on Freenode at "#elasticsearch":https://webchat.freenode.net/#elasticsearch. The Elasticsearch GitHub repository is reserved for bug reports and feature requests only.

h3. Building from Source

Elasticsearch uses "Gradle":https://gradle.org for its build system.

In order to create a distribution, simply run the @./gradlew assemble@ command in the cloned directory.

The distribution for each project will be created under the @build/distributions@ directory in that project.

See the "TESTING":TESTING.asciidoc file for more information about running the Elasticsearch test suite.

h3. Upgrading from older Elasticsearch versions

In order to ensure a smooth upgrade process from earlier versions of Elasticsearch, please see our "upgrade documentation":https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html for more details on the upgrade process.