123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107 |
- [[docs-multi-termvectors]]
- === Multi termvectors API
- Multi termvectors API allows to get multiple termvectors at once. The
- documents from which to retrieve the term vectors are specified by an index and id.
- But the documents could also be artificially provided in the request itself.
- The response includes a `docs`
- array with all the fetched termvectors, each element having the structure
- provided by the <<docs-termvectors,termvectors>>
- API. Here is an example:
- [source,js]
- --------------------------------------------------
- POST /_mtermvectors
- {
- "docs": [
- {
- "_index": "twitter",
- "_id": "2",
- "term_statistics": true
- },
- {
- "_index": "twitter",
- "_id": "1",
- "fields": [
- "message"
- ]
- }
- ]
- }
- --------------------------------------------------
- // CONSOLE
- // TEST[setup:twitter]
- See the <<docs-termvectors,termvectors>> API for a description of possible parameters.
- The `_mtermvectors` endpoint can also be used against an index (in which case it
- is not required in the body):
- [source,js]
- --------------------------------------------------
- POST /twitter/_mtermvectors
- {
- "docs": [
- {
- "_id": "2",
- "fields": [
- "message"
- ],
- "term_statistics": true
- },
- {
- "_id": "1"
- }
- ]
- }
- --------------------------------------------------
- // CONSOLE
- // TEST[setup:twitter]
- If all requested documents are on same index and also the parameters are the same, the request can be simplified:
- [source,js]
- --------------------------------------------------
- POST /twitter/_mtermvectors
- {
- "ids" : ["1", "2"],
- "parameters": {
- "fields": [
- "message"
- ],
- "term_statistics": true
- }
- }
- --------------------------------------------------
- // CONSOLE
- // TEST[setup:twitter]
- Additionally, just like for the <<docs-termvectors,termvectors>>
- API, term vectors could be generated for user provided documents.
- The mapping used is determined by `_index`.
- [source,js]
- --------------------------------------------------
- POST /_mtermvectors
- {
- "docs": [
- {
- "_index": "twitter",
- "doc" : {
- "user" : "John Doe",
- "message" : "twitter test test test"
- }
- },
- {
- "_index": "twitter",
- "doc" : {
- "user" : "Jane Doe",
- "message" : "Another twitter test ..."
- }
- }
- ]
- }
- --------------------------------------------------
- // CONSOLE
- // TEST[setup:twitter]
|