这是elasticsearch的镜像仓库,每日同步一次

Przemysław Witek 31f6e78acd Allow the user to specify 'query' in Evaluate Data Frame request (#45775) 6 éve
.ci 664a29c890 Use system properties for build cache configuration (#45295) 6 éve
.github 3a7ae2f498 Make PR template reference supported architectures (#42919) 6 éve
benchmarks aa12af8a3c Enable node roles to be pluggable (#43175) 6 éve
buildSrc f862c3080a Pass COMPUTERNAME env var to elasticsearch.bat (#45763) 6 éve
client 31f6e78acd Allow the user to specify 'query' in Evaluate Data Frame request (#45775) 6 éve
dev-tools 4171c2b3ec Align generated release notes with doc standards (#39234) 6 éve
distribution 9c234ad10a CLI tools: write errors to stderr instead of stdout 6 éve
docs 31f6e78acd Allow the user to specify 'query' in Evaluate Data Frame request (#45775) 6 éve
gradle 1567c39395 Add build operating system as build scan tag (#45558) 6 éve
libs 9c234ad10a CLI tools: write errors to stderr instead of stdout 6 éve
licenses 0d8aa7527e Reorganize license files 7 éve
modules 44133b7725 Fix GeoIpProcessorFactoryTests on windows (#45668) 6 éve
plugins df01766c15 Repository Cleanup Endpoint (#43900) 6 éve
qa f862c3080a Pass COMPUTERNAME env var to elasticsearch.bat (#45763) 6 éve
rest-api-spec 3cf174d239 re-enable bwc tests and update cat.alias rest tests (#45822) 6 éve
server 0fb695e2e4 Never release store using CancellableThreads (#45409) 6 éve
test ed52a5e19f Disable testTimeoutPerConnection on Windows (#45785) 6 éve
x-pack 31f6e78acd Allow the user to specify 'query' in Evaluate Data Frame request (#45775) 6 éve
.dir-locals.el 989da585b2 Go back to 140 column limit in .dir-locals.el 8 éve
.editorconfig dfecb256cb Exit batch files explictly using ERRORLEVEL (#29583) 6 éve
.gitattributes 3e7fccddaf Add a CHANGELOG file for release notes. (#29450) 7 éve
.gitignore 65cbe51c39 Make sure the clean task doesn't break test fixtures (#43641) 6 éve
CONTRIBUTING.md b15d62c3ab Remove the transport client (#42538) 6 éve
LICENSE.txt dd66fc847b Clarify mixed license text (#45637) 6 éve
NOTICE.txt b9552202c1 Restore date aggregation performance in UTC case (#38221) 6 éve
README.textile afc6578858 [Docs] Correct README example snippet (#45133) 6 éve
TESTING.asciidoc 3ebb7ae1d6 Rename system property to change bwc checkout behavior (#45574) 6 éve
Vagrantfile 89911c7119 Convert vagrant tests to per platform projects (#45064) 6 éve
build.gradle 3cf174d239 re-enable bwc tests and update cat.alias rest tests (#45822) 6 éve
gradle.properties a3d33677fa Testclusters: improove timeout handling (#43440) 6 éve
gradlew 1b8070fdfd Upgrade to Gradle 5.5 (#43788) 6 éve
gradlew.bat 1b8070fdfd Upgrade to Gradle 5.5 (#43788) 6 éve
settings.gradle faa47b5cbf Use reaper process instead of shutdown hooks for testclusters (#44927) 6 éve

README.textile

h1. Elasticsearch

h2. A Distributed RESTful Search Engine

h3. "https://www.elastic.co/products/elasticsearch":https://www.elastic.co/products/elasticsearch

Elasticsearch is a distributed RESTful search engine built for the cloud. Features include:

* Distributed and Highly Available Search Engine.
** Each index is fully sharded with a configurable number of shards.
** Each shard can have one or more replicas.
** Read / Search operations performed on any of the replica shards.
* Multi Tenant.
** Support for more than one index.
** Index level configuration (number of shards, index storage, ...).
* Various set of APIs
** HTTP RESTful API
** Native Java API.
** All APIs perform automatic node operation rerouting.
* Document oriented
** No need for upfront schema definition.
** Schema can be defined for customization of the indexing process.
* Reliable, Asynchronous Write Behind for long term persistency.
* (Near) Real Time Search.
* Built on top of Lucene
** Each shard is a fully functional Lucene index
** All the power of Lucene easily exposed through simple configuration / plugins.
* Per operation consistency
** Single document level operations are atomic, consistent, isolated and durable.

h2. Getting Started

First of all, DON'T PANIC. It will take 5 minutes to get the gist of what Elasticsearch is all about.

h3. Requirements

You need to have a recent version of Java installed. See the "Setup":http://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html#jvm-version page for more information.

h3. Installation

* "Download":https://www.elastic.co/downloads/elasticsearch and unzip the Elasticsearch official distribution.
* Run @bin/elasticsearch@ on unix, or @bin\elasticsearch.bat@ on windows.
* Run @curl -X GET http://localhost:9200/@.
* Start more servers ...

h3. Indexing

Let's try and index some twitter like information. First, let's index some tweets (the @twitter@ index will be created automatically):


curl -XPUT 'http://localhost:9200/twitter/_doc/1?pretty' -H 'Content-Type: application/json' -d '
{
"user": "kimchy",
"post_date": "2009-11-15T13:12:00",
"message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/twitter/_doc/2?pretty' -H 'Content-Type: application/json' -d '
{
"user": "kimchy",
"post_date": "2009-11-15T14:12:12",
"message": "Another tweet, will it be indexed?"
}'

curl -XPUT 'http://localhost:9200/twitter/_doc/3?pretty' -H 'Content-Type: application/json' -d '
{
"user": "elastic",
"post_date": "2010-01-15T01:46:38",
"message": "Building the site, should be kewl"
}'


Now, let's see if the information was added by GETting it:


curl -XGET 'http://localhost:9200/twitter/_doc/1?pretty=true'
curl -XGET 'http://localhost:9200/twitter/_doc/2?pretty=true'
curl -XGET 'http://localhost:9200/twitter/_doc/3?pretty=true'


h3. Searching

Mmm search..., shouldn't it be elastic?
Let's find all the tweets that @kimchy@ posted:


curl -XGET 'http://localhost:9200/twitter/_search?q=user:kimchy&pretty=true'


We can also use the JSON query language Elasticsearch provides instead of a query string:


curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
"query" : {
"match" : { "user": "kimchy" }
}
}'


Just for kicks, let's get all the documents stored (we should see the tweet from @elastic@ as well):


curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
"query" : {
"match_all" : {}
}
}'


We can also do range search (the @post_date@ was automatically identified as date)


curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
"query" : {
"range" : {
"post_date" : { "from" : "2009-11-15T13:00:00", "to" : "2009-11-15T14:00:00" }
}
}
}'


There are many more options to perform search, after all, it's a search product no? All the familiar Lucene queries are available through the JSON query language, or through the query parser.

h3. Multi Tenant - Indices and Types

Man, that twitter index might get big (in this case, index size == valuation). Let's see if we can structure our twitter system a bit differently in order to support such large amounts of data.

Elasticsearch supports multiple indices. In the previous example we used an index called @twitter@ that stored tweets for every user.

Another way to define our simple twitter system is to have a different index per user (note, though that each index has an overhead). Here is the indexing curl's in this case:


curl -XPUT 'http://localhost:9200/kimchy/_doc/1?pretty' -H 'Content-Type: application/json' -d '
{
"user": "kimchy",
"post_date": "2009-11-15T13:12:00",
"message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/kimchy/_doc/2?pretty' -H 'Content-Type: application/json' -d '
{
"user": "kimchy",
"post_date": "2009-11-15T14:12:12",
"message": "Another tweet, will it be indexed?"
}'


The above will index information into the @kimchy@ index. Each user will get their own special index.

Complete control on the index level is allowed. As an example, in the above case, we might want to change from the default 1 shard with 1 replica per index, to 2 shards with 1 replica per index (because this user tweets a lot). Here is how this can be done (the configuration can be in yaml as well):


curl -XPUT http://localhost:9200/another_user?pretty -H 'Content-Type: application/json' -d '
{
"settings" : {
"index.number_of_shards" : 2,
"index.number_of_replicas" : 1
}
}'


Search (and similar operations) are multi index aware. This means that we can easily search on more than one
index (twitter user), for example:


curl -XGET 'http://localhost:9200/kimchy,another_user/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
"query" : {
"match_all" : {}
}
}'


Or on all the indices:


curl -XGET 'http://localhost:9200/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
"query" : {
"match_all" : {}
}
}'


{One liner teaser}: And the cool part about that? You can easily search on multiple twitter users (indices), with different boost levels per user (index), making social search so much simpler (results from my friends rank higher than results from friends of my friends).

h3. Distributed, Highly Available

Let's face it, things will fail....

Elasticsearch is a highly available and distributed search engine. Each index is broken down into shards, and each shard can have one or more replicas. By default, an index is created with 1 shards and 1 replica per shard (1/1). There are many topologies that can be used, including 1/10 (improve search performance), or 20/1 (improve indexing performance, with search executed in a map reduce fashion across shards).

In order to play with the distributed nature of Elasticsearch, simply bring more nodes up and shut down nodes. The system will continue to serve requests (make sure you use the correct http port) with the latest data indexed.

h3. Where to go from here?

We have just covered a very small portion of what Elasticsearch is all about. For more information, please refer to the "elastic.co":http://www.elastic.co/products/elasticsearch website. General questions can be asked on the "Elastic Discourse forum":https://discuss.elastic.co or on IRC on Freenode at "#elasticsearch":https://webchat.freenode.net/#elasticsearch. The Elasticsearch GitHub repository is reserved for bug reports and feature requests only.

h3. Building from Source

Elasticsearch uses "Gradle":https://gradle.org for its build system.

In order to create a distribution, simply run the @./gradlew assemble@ command in the cloned directory.

The distribution for each project will be created under the @build/distributions@ directory in that project.

See the "TESTING":TESTING.asciidoc file for more information about running the Elasticsearch test suite.

h3. Upgrading from older Elasticsearch versions

In order to ensure a smooth upgrade process from earlier versions of Elasticsearch, please see our "upgrade documentation":https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html for more details on the upgrade process.