这是elasticsearch的镜像仓库,每日同步一次

Mayya Sharipova fdff8f3db0 Do NOT allow termvectors on nested fields (#32728) пре 7 година
.ci d0fd23669a Enable FIPS JVM in CI (#32330) пре 7 година
.github 80620bd086 Add version command to issue template пре 8 година
benchmarks 21eb9695af Build: Remove shadowing from benchmarks (#32475) пре 7 година
buildSrc edd477a15e Fix the default pom file name (#33063) пре 7 година
client 61f5c188e0 HLRC: Fix Compile Error From Missing Throws (#33083) пре 7 година
dev-tools 3428dc20a4 Improve release notes script (#31833) пре 7 година
distribution 82d10b484a Run forbidden api checks with runtimeJavaVersion (#32947) пре 7 година
docs fdff8f3db0 Do NOT allow termvectors on nested fields (#32728) пре 7 година
gradle b6c14935d7 Determine the minimum gradle version based on the wrapper (#32226) пре 7 година
libs 82d10b484a Run forbidden api checks with runtimeJavaVersion (#32947) пре 7 година
licenses 0d8aa7527e Reorganize license files пре 7 година
modules 393eec1482 Set maxScore for empty TopDocs to Nan rather than 0 (#32938) пре 7 година
plugins 67bfb765ee Refactor Netty4Utils#maybeDie (#33021) пре 7 година
qa 67bfb765ee Refactor Netty4Utils#maybeDie (#33021) пре 7 година
rest-api-spec fdff8f3db0 Do NOT allow termvectors on nested fields (#32728) пре 7 година
server fdff8f3db0 Do NOT allow termvectors on nested fields (#32728) пре 7 година
test 917e5a8c94 TESTS: Fix Random Fail in MockTcpTransportTests (#33061) пре 7 година
x-pack 8f8d3a5556 [Rollup] Return empty response when aggs are missing (#32796) пре 7 година
.dir-locals.el 989da585b2 Go back to 140 column limit in .dir-locals.el пре 8 година
.editorconfig 18e969e161 Add simple EditorConfig пре 10 година
.gitattributes 3e7fccddaf Add a CHANGELOG file for release notes. (#29450) пре 7 година
.gitignore a740b542e5 Cleanup .gitignore (#30145) пре 7 година
CONTRIBUTING.md 2c81d7f77e Build: Rework shadow plugin configuration (#32409) пре 7 година
LICENSE.txt 0d8aa7527e Reorganize license files пре 7 година
NOTICE.txt 4310ef0be6 [Docs] Update Copyright notices to 2018 (#29404) пре 7 година
README.textile 736d2e8a65 Docs: Fix README upgrade mention (#32313) пре 7 година
TESTING.asciidoc a1b538122c [test] java tests for archive packaging (#30734) пре 7 година
Vagrantfile 16fe22047e Revert "[test] turn on host io cache for opensuse (#32053)" пре 7 година
build.gradle 2c81d7f77e Build: Rework shadow plugin configuration (#32409) пре 7 година
gradle.properties 07b962f31a Bump Gradle heap to 2 GB (#30535) пре 7 година
gradlew a799939630 Revert "Build: Move gradle wrapper jar to a dot dir (#30146)" пре 7 година
gradlew.bat a799939630 Revert "Build: Move gradle wrapper jar to a dot dir (#30146)" пре 7 година
settings.gradle b6e95cde3a Fixes libs:dissect when in eclipse пре 7 година

README.textile

h1. Elasticsearch

h2. A Distributed RESTful Search Engine

h3. "https://www.elastic.co/products/elasticsearch":https://www.elastic.co/products/elasticsearch

Elasticsearch is a distributed RESTful search engine built for the cloud. Features include:

* Distributed and Highly Available Search Engine.
** Each index is fully sharded with a configurable number of shards.
** Each shard can have one or more replicas.
** Read / Search operations performed on any of the replica shards.
* Multi Tenant.
** Support for more than one index.
** Index level configuration (number of shards, index storage, ...).
* Various set of APIs
** HTTP RESTful API
** Native Java API.
** All APIs perform automatic node operation rerouting.
* Document oriented
** No need for upfront schema definition.
** Schema can be defined for customization of the indexing process.
* Reliable, Asynchronous Write Behind for long term persistency.
* (Near) Real Time Search.
* Built on top of Lucene
** Each shard is a fully functional Lucene index
** All the power of Lucene easily exposed through simple configuration / plugins.
* Per operation consistency
** Single document level operations are atomic, consistent, isolated and durable.

h2. Getting Started

First of all, DON'T PANIC. It will take 5 minutes to get the gist of what Elasticsearch is all about.

h3. Requirements

You need to have a recent version of Java installed. See the "Setup":http://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html#jvm-version page for more information.

h3. Installation

* "Download":https://www.elastic.co/downloads/elasticsearch and unzip the Elasticsearch official distribution.
* Run @bin/elasticsearch@ on unix, or @bin\elasticsearch.bat@ on windows.
* Run @curl -X GET http://localhost:9200/@.
* Start more servers ...

h3. Indexing

Let's try and index some twitter like information. First, let's index some tweets (the @twitter@ index will be created automatically):


curl -XPUT 'http://localhost:9200/twitter/doc/1?pretty' -H 'Content-Type: application/json' -d '
{
"user": "kimchy",
"post_date": "2009-11-15T13:12:00",
"message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/twitter/doc/2?pretty' -H 'Content-Type: application/json' -d '
{
"user": "kimchy",
"post_date": "2009-11-15T14:12:12",
"message": "Another tweet, will it be indexed?"
}'

curl -XPUT 'http://localhost:9200/twitter/doc/3?pretty' -H 'Content-Type: application/json' -d '
{
"user": "elastic",
"post_date": "2010-01-15T01:46:38",
"message": "Building the site, should be kewl"
}'


Now, let's see if the information was added by GETting it:


curl -XGET 'http://localhost:9200/twitter/doc/1?pretty=true'
curl -XGET 'http://localhost:9200/twitter/doc/2?pretty=true'
curl -XGET 'http://localhost:9200/twitter/doc/3?pretty=true'


h3. Searching

Mmm search..., shouldn't it be elastic?
Let's find all the tweets that @kimchy@ posted:


curl -XGET 'http://localhost:9200/twitter/_search?q=user:kimchy&pretty=true'


We can also use the JSON query language Elasticsearch provides instead of a query string:


curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
"query" : {
"match" : { "user": "kimchy" }
}
}'


Just for kicks, let's get all the documents stored (we should see the tweet from @elastic@ as well):


curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
"query" : {
"match_all" : {}
}
}'


We can also do range search (the @post_date@ was automatically identified as date)


curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
"query" : {
"range" : {
"post_date" : { "from" : "2009-11-15T13:00:00", "to" : "2009-11-15T14:00:00" }
}
}
}'


There are many more options to perform search, after all, it's a search product no? All the familiar Lucene queries are available through the JSON query language, or through the query parser.

h3. Multi Tenant - Indices and Types

Man, that twitter index might get big (in this case, index size == valuation). Let's see if we can structure our twitter system a bit differently in order to support such large amounts of data.

Elasticsearch supports multiple indices. In the previous example we used an index called @twitter@ that stored tweets for every user.

Another way to define our simple twitter system is to have a different index per user (note, though that each index has an overhead). Here is the indexing curl's in this case:


curl -XPUT 'http://localhost:9200/kimchy/doc/1?pretty' -H 'Content-Type: application/json' -d '
{
"user": "kimchy",
"post_date": "2009-11-15T13:12:00",
"message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/kimchy/doc/2?pretty' -H 'Content-Type: application/json' -d '
{
"user": "kimchy",
"post_date": "2009-11-15T14:12:12",
"message": "Another tweet, will it be indexed?"
}'


The above will index information into the @kimchy@ index. Each user will get their own special index.

Complete control on the index level is allowed. As an example, in the above case, we would want to change from the default 5 shards with 1 replica per index, to only 1 shard with 1 replica per index (== per twitter user). Here is how this can be done (the configuration can be in yaml as well):


curl -XPUT http://localhost:9200/another_user?pretty -H 'Content-Type: application/json' -d '
{
"index" : {
"number_of_shards" : 1,
"number_of_replicas" : 1
}
}'


Search (and similar operations) are multi index aware. This means that we can easily search on more than one
index (twitter user), for example:


curl -XGET 'http://localhost:9200/kimchy,another_user/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
"query" : {
"match_all" : {}
}
}'


Or on all the indices:


curl -XGET 'http://localhost:9200/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
"query" : {
"match_all" : {}
}
}'


{One liner teaser}: And the cool part about that? You can easily search on multiple twitter users (indices), with different boost levels per user (index), making social search so much simpler (results from my friends rank higher than results from friends of my friends).

h3. Distributed, Highly Available

Let's face it, things will fail....

Elasticsearch is a highly available and distributed search engine. Each index is broken down into shards, and each shard can have one or more replicas. By default, an index is created with 5 shards and 1 replica per shard (5/1). There are many topologies that can be used, including 1/10 (improve search performance), or 20/1 (improve indexing performance, with search executed in a map reduce fashion across shards).

In order to play with the distributed nature of Elasticsearch, simply bring more nodes up and shut down nodes. The system will continue to serve requests (make sure you use the correct http port) with the latest data indexed.

h3. Where to go from here?

We have just covered a very small portion of what Elasticsearch is all about. For more information, please refer to the "elastic.co":http://www.elastic.co/products/elasticsearch website. General questions can be asked on the "Elastic Discourse forum":https://discuss.elastic.co or on IRC on Freenode at "#elasticsearch":https://webchat.freenode.net/#elasticsearch. The Elasticsearch GitHub repository is reserved for bug reports and feature requests only.

h3. Building from Source

Elasticsearch uses "Gradle":https://gradle.org for its build system.

In order to create a distribution, simply run the @./gradlew assemble@ command in the cloned directory.

The distribution for each project will be created under the @build/distributions@ directory in that project.

See the "TESTING":TESTING.asciidoc file for more information about running the Elasticsearch test suite.

h3. Upgrading from older Elasticsearch versions

In order to ensure a smooth upgrade process from earlier versions of Elasticsearch, please see our "upgrade documentation":https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html for more details on the upgrade process.