|
@@ -0,0 +1,212 @@
|
|
|
+from typing import Tuple, Union, Optional, Dict, Any
|
|
|
+from tinygrad import Tensor, Variable, TinyJit, dtypes, nn, Device
|
|
|
+from tinygrad.helpers import getenv
|
|
|
+
|
|
|
+# https://github.com/facebookresearch/llama/blob/1076b9c51c77ad06e9d7ba8a4c6df775741732bd/llama/model.py#L47
|
|
|
+def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, dtype=dtypes.half) -> Tensor:
|
|
|
+ freqs = 1.0 / (theta ** (Tensor.arange(0, dim, 2)[:(dim // 2)] / dim))
|
|
|
+ freqs = Tensor.arange(end).unsqueeze(dim=1) * freqs.unsqueeze(dim=0)
|
|
|
+ # TODO: move dtype outside this
|
|
|
+ return Tensor.stack(freqs.cos().cast(dtype), freqs.sin().cast(dtype), dim=-1).reshape(1, end, 1, dim//2, 2)
|
|
|
+
|
|
|
+# (a+i*b) * (c+i*d) = (ac-bd) + i*(ad+bc)
|
|
|
+def complex_mult(A, c, d):
|
|
|
+ a,b = A[..., 0:1], A[..., 1:2]
|
|
|
+ ro = a*c - b*d
|
|
|
+ co = a*d + b*c
|
|
|
+ return ro.cat(co, dim=-1)
|
|
|
+
|
|
|
+def apply_rotary_emb(xq:Tensor, xk:Tensor, freqs_cis:Tensor) -> Tuple[Tensor, Tensor]:
|
|
|
+ assert freqs_cis.shape[1] == xq.shape[1] == xk.shape[1], f"freqs_cis shape mismatch {freqs_cis.shape} xq:{xq.shape} xk:{xk.shape}"
|
|
|
+ xq = xq.reshape(*xq.shape[0:-1], -1, 2)
|
|
|
+ xk = xk.reshape(*xk.shape[0:-1], -1, 2)
|
|
|
+ assert len(xq.shape) == len(xk.shape) == len(freqs_cis.shape) == 5
|
|
|
+ c, d = freqs_cis[..., 0:1], freqs_cis[..., 1:2]
|
|
|
+ xq_out = complex_mult(xq, c, d)
|
|
|
+ xk_out = complex_mult(xk, c, d)
|
|
|
+ return xq_out.flatten(3), xk_out.flatten(3)
|
|
|
+
|
|
|
+def repeat_kv(x:Tensor, n_rep:int) -> Tensor:
|
|
|
+ bs, seqlen, n_kv_heads, head_dim = x.shape
|
|
|
+ if n_rep == 1: return x
|
|
|
+ # NOTE: this is different from x.repeat((1, 1, n_rep, 1))
|
|
|
+ return x.repeat((1, 1, 1, n_rep)).reshape(bs, seqlen, n_kv_heads * n_rep, head_dim)
|
|
|
+
|
|
|
+class Attention:
|
|
|
+ def __init__(self, dim, n_heads, n_kv_heads, max_context, linear=nn.Linear):
|
|
|
+ self.n_heads = n_heads
|
|
|
+ self.n_kv_heads = n_kv_heads if n_kv_heads is not None else n_heads # n_kv_heads != n_heads implies MQA [arxiv/2307.09288, A.2.1]
|
|
|
+ self.head_dim = dim // n_heads
|
|
|
+ self.n_rep = self.n_heads // self.n_kv_heads
|
|
|
+ self.max_context = max_context
|
|
|
+
|
|
|
+ self.wq = linear(dim, self.n_heads * self.head_dim, bias=False)
|
|
|
+ self.wk = linear(dim, self.n_kv_heads * self.head_dim, bias=False)
|
|
|
+ self.wv = linear(dim, self.n_kv_heads * self.head_dim, bias=False)
|
|
|
+ self.wo = linear(self.n_heads * self.head_dim, dim, bias=False)
|
|
|
+
|
|
|
+ def __call__(self, x:Tensor, start_pos:Union[Variable,int], freqs_cis:Tensor, mask:Optional[Tensor]) -> Tensor:
|
|
|
+ xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
|
|
+ xq = xq.reshape(xq.shape[0], xq.shape[1], self.n_heads, self.head_dim)
|
|
|
+ xk = xk.reshape(xk.shape[0], xk.shape[1], self.n_kv_heads, self.head_dim)
|
|
|
+ xv = xv.reshape(xv.shape[0], xv.shape[1], self.n_kv_heads, self.head_dim)
|
|
|
+
|
|
|
+ xq, xk = apply_rotary_emb(xq, xk, freqs_cis)
|
|
|
+ bsz, seqlen, _, _ = xq.shape
|
|
|
+
|
|
|
+ # create kv cache
|
|
|
+ if not hasattr(self, "cache_kv"):
|
|
|
+ self.cache_kv = Tensor.zeros(2, bsz, self.max_context, self.n_kv_heads, self.head_dim, dtype=x.dtype).contiguous().realize()
|
|
|
+ if isinstance(x.device, tuple):
|
|
|
+ # TODO: instead of specifying how to shard, it can follow how xk and xv are being sharded
|
|
|
+ self.cache_kv.shard_((x.device), axis=None).realize()
|
|
|
+
|
|
|
+ # update the cache
|
|
|
+ assert xk.dtype == xv.dtype == self.cache_kv.dtype, f"{xk.dtype=}, {xv.dtype=}, {self.cache_kv.dtype=}"
|
|
|
+ self.cache_kv.shrink((None, None, (start_pos, start_pos+seqlen), None, None)).assign(Tensor.stack(xk, xv)).realize()
|
|
|
+
|
|
|
+ keys = self.cache_kv[0].shrink((None, (0, start_pos+seqlen), None, None)) if start_pos > 0 else xk
|
|
|
+ values = self.cache_kv[1].shrink((None, (0, start_pos+seqlen), None, None)) if start_pos > 0 else xv
|
|
|
+
|
|
|
+ keys, values = repeat_kv(keys, self.n_rep), repeat_kv(values, self.n_rep)
|
|
|
+ xq, keys, values = xq.transpose(1, 2), keys.transpose(1, 2), values.transpose(1, 2)
|
|
|
+ attn = xq.scaled_dot_product_attention(keys, values, mask).transpose(1, 2)
|
|
|
+ attn = attn.reshape(bsz, seqlen, -1)
|
|
|
+ return self.wo(attn)
|
|
|
+
|
|
|
+class FeedForward:
|
|
|
+ def __init__(self, dim:int, hidden_dim:int, linear=nn.Linear):
|
|
|
+ self.w1 = linear(dim, hidden_dim, bias=False)
|
|
|
+ self.w2 = linear(hidden_dim, dim, bias=False)
|
|
|
+ self.w3 = linear(dim, hidden_dim, bias=False) # the gate in Gated Linear Unit
|
|
|
+
|
|
|
+ def __call__(self, x:Tensor) -> Tensor:
|
|
|
+ return self.w2(self.w1(x).silu() * self.w3(x)) # SwiGLU [arxiv/2002.05202, eq (5)]
|
|
|
+
|
|
|
+class TransformerBlock:
|
|
|
+ def __init__(self, dim:int, hidden_dim:int, n_heads:int, n_kv_heads:int, norm_eps:float, max_context:int, linear=nn.Linear, feed_forward=FeedForward):
|
|
|
+ self.attention = Attention(dim, n_heads, n_kv_heads, max_context, linear)
|
|
|
+ self.feed_forward = feed_forward(dim, hidden_dim, linear)
|
|
|
+ self.attention_norm = nn.RMSNorm(dim, norm_eps)
|
|
|
+ self.ffn_norm = nn.RMSNorm(dim, norm_eps)
|
|
|
+
|
|
|
+ def __call__(self, x:Tensor, start_pos:Union[Variable,int], freqs_cis:Tensor, mask:Optional[Tensor]):
|
|
|
+ h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask)
|
|
|
+ return (h + self.feed_forward(self.ffn_norm(h))).contiguous()
|
|
|
+
|
|
|
+# standard openai sampling
|
|
|
+def sample(logits: Tensor, temp: float, k: int, p: float, af: float, ap: float):
|
|
|
+ assert logits.ndim == 1, "only works on 1d tensors"
|
|
|
+ assert 0 <= p <= 1, "p must be between 0 and 1"
|
|
|
+ assert 0 <= k <= logits.numel(), "k must be between 0 and numel"
|
|
|
+
|
|
|
+ # if temperature is very low just use argmax
|
|
|
+ if temp < 1e-6: return logits.argmax()
|
|
|
+
|
|
|
+ # alpha sampling
|
|
|
+ if af or ap:
|
|
|
+ if not hasattr(sample, "alpha_counter"):
|
|
|
+ setattr(sample, "alpha_counter", Tensor.zeros_like(logits, dtype=dtypes.int32).contiguous())
|
|
|
+ logits = logits - (sample.alpha_counter * af + (sample.alpha_counter > 0) * ap)
|
|
|
+
|
|
|
+ # replace NaNs with -inf
|
|
|
+ logits = (logits != logits).where(-float("inf"), logits)
|
|
|
+
|
|
|
+ # softmax
|
|
|
+ t = (logits / temp).softmax()
|
|
|
+
|
|
|
+ counter, counter2 = Tensor.arange(t.numel(), device=logits.device).contiguous(), Tensor.arange(t.numel() - 1, -1, -1, device=logits.device).contiguous()
|
|
|
+ # top k
|
|
|
+ if k:
|
|
|
+ output, output_indices = Tensor.zeros(k, device=logits.device).contiguous(), Tensor.zeros(k, device=logits.device, dtype=dtypes.int32).contiguous()
|
|
|
+ for i in range(k):
|
|
|
+ t_argmax = (t.numel() - ((t == (t_max := t.max())) * counter2).max() - 1).cast(dtypes.default_int)
|
|
|
+ output = output + t_max.unsqueeze(0).pad(((i, k - i - 1),))
|
|
|
+ output_indices = output_indices + t_argmax.unsqueeze(0).pad(((i, k - i - 1),))
|
|
|
+ t = (counter == t_argmax).where(0, t)
|
|
|
+
|
|
|
+ # approximate top p
|
|
|
+ # because we are already limited to top k elements we can do top p "without sorting"
|
|
|
+ output_cumsum = output[::-1]._cumsum()[::-1] + t.sum()
|
|
|
+ output = (output_cumsum >= (1 - p)) * output
|
|
|
+ output_indices = (output_cumsum >= (1 - p)) * output_indices
|
|
|
+
|
|
|
+ # sample
|
|
|
+ output_idx = output.multinomial()
|
|
|
+ output_token = output_indices[output_idx]
|
|
|
+ else:
|
|
|
+ output_token = t.multinomial()
|
|
|
+
|
|
|
+ # increase alpha counter
|
|
|
+ if af or ap:
|
|
|
+ sample.alpha_counter = (counter == output_token).where(sample.alpha_counter + 1, sample.alpha_counter)
|
|
|
+
|
|
|
+ return output_token
|
|
|
+
|
|
|
+class Transformer:
|
|
|
+ def __init__(self, dim:int, hidden_dim:int, n_heads:int, n_layers:int, norm_eps:float, vocab_size, linear=nn.Linear, n_kv_heads=None, rope_theta=10000, max_context=1024, jit=True, feed_forward=FeedForward):
|
|
|
+ self.layers = [TransformerBlock(dim, hidden_dim, n_heads, n_kv_heads, norm_eps, max_context, linear, feed_forward=feed_forward) for _ in range(n_layers)]
|
|
|
+ self.norm = nn.RMSNorm(dim, norm_eps)
|
|
|
+ self.tok_embeddings = nn.Embedding(vocab_size, dim)
|
|
|
+ self.output = nn.Linear(dim, vocab_size, bias=False)
|
|
|
+ self.max_context = max_context
|
|
|
+ self.freqs_cis = precompute_freqs_cis(dim // n_heads, self.max_context * 2, rope_theta)
|
|
|
+ self.forward_jit = TinyJit(self.forward) if jit else None
|
|
|
+
|
|
|
+ def forward(self, tokens:Tensor, start_pos:Union[Variable,int], temperature:float, top_k:int, top_p:float, alpha_f:float, alpha_p:float):
|
|
|
+ _bsz, seqlen = tokens.shape
|
|
|
+ freqs_cis = self.freqs_cis.shrink((None, (start_pos, start_pos+seqlen),None,None,None))
|
|
|
+
|
|
|
+ h = self.tok_embeddings(tokens)
|
|
|
+ mask = Tensor.full((1, 1, seqlen, start_pos+seqlen), float("-inf"), dtype=h.dtype, device=h.device).triu(start_pos+1).realize() if seqlen > 1 else None
|
|
|
+ for i, layer in enumerate(self.layers):
|
|
|
+ h = layer(h, start_pos, freqs_cis, mask)
|
|
|
+ print(f"layer {i}", h.tolist().__str__()[0:100])
|
|
|
+ logits = self.output(self.norm(h)).float()[:, -1, :]
|
|
|
+
|
|
|
+ return sample(logits.flatten(), temperature, top_k, top_p, alpha_f, alpha_p).realize()
|
|
|
+
|
|
|
+ def __call__(self, tokens:Tensor, start_pos:Variable, temperature:float=0.0, top_k:int=0, top_p:float=0.8, alpha_f:float=0.0, alpha_p:float=0.0):
|
|
|
+ # TODO: better way to handle the first call v.s. the rest?
|
|
|
+ if tokens.shape[0:2] == (1,1) and self.forward_jit is not None:
|
|
|
+ return self.forward_jit(tokens, Variable("start_pos", 0, self.max_context).bind(start_pos), temperature, top_k, top_p, alpha_f, alpha_p)
|
|
|
+ return self.forward(tokens, start_pos, temperature, top_k, top_p, alpha_f, alpha_p)
|
|
|
+
|
|
|
+ def reset(self):
|
|
|
+ for layer in self.layers:
|
|
|
+ print(f"reset layer: {layer.attention.cache_kv}")
|
|
|
+ layer.attention.cache_kv = layer.attention.cache_kv.zeros_like()
|
|
|
+
|
|
|
+# *** helpers ***
|
|
|
+
|
|
|
+def convert_from_huggingface(weights:Dict[str, Tensor], model: Transformer, n_heads: int, n_kv_heads: int):
|
|
|
+ def permute(v: Tensor, n_heads: int):
|
|
|
+ return v.reshape(n_heads, 2, v.shape[0] // n_heads // 2, v.shape[1]).transpose(1, 2).reshape(*v.shape[:2])
|
|
|
+
|
|
|
+ keymap = {
|
|
|
+ "model.embed_tokens.weight": "tok_embeddings.weight",
|
|
|
+ **{f"model.layers.{l}.input_layernorm.weight": f"layers.{l}.attention_norm.weight" for l in range(len(model.layers))},
|
|
|
+ **{f"model.layers.{l}.self_attn.{x}_proj.weight": f"layers.{l}.attention.w{x}.weight" for x in ["q", "k", "v", "o"] for l in range(len(model.layers))},
|
|
|
+ **{f"model.layers.{l}.post_attention_layernorm.weight": f"layers.{l}.ffn_norm.weight" for l in range(len(model.layers))},
|
|
|
+ **{f"model.layers.{l}.mlp.{x}_proj.weight": f"layers.{l}.feed_forward.w{y}.weight" for x, y in {"gate": "1", "down": "2", "up": "3"}.items() for l in range(len(model.layers))},
|
|
|
+ "model.norm.weight": "norm.weight",
|
|
|
+ "lm_head.weight": "output.weight",
|
|
|
+ }
|
|
|
+ sd = {}
|
|
|
+ for k, v in weights.items():
|
|
|
+ if ".rotary_emb." in k: continue
|
|
|
+ v = v.to(Device.DEFAULT)
|
|
|
+ if "model.layers" in k:
|
|
|
+ if "q_proj" in k:
|
|
|
+ v = permute(v, n_heads)
|
|
|
+ elif "k_proj" in k:
|
|
|
+ v = permute(v, n_kv_heads)
|
|
|
+ sd[keymap[k]] = v
|
|
|
+ return sd
|
|
|
+
|
|
|
+def fix_bf16(weights:Dict[Any, Tensor]):
|
|
|
+ if getenv("SUPPORT_BF16", 1):
|
|
|
+ # TODO: without casting to float16, 70B llama OOM on tinybox.
|
|
|
+ return {k:v.cast(dtypes.float16) if v.dtype == dtypes.bfloat16 else v for k,v in weights.items()}
|
|
|
+ # TODO: check if device supports bf16
|
|
|
+ return {k:v.llvm_bf16_cast(dtypes.half).to(v.device) if v.dtype == dtypes.bfloat16 else v for k,v in weights.items()}
|