Browse Source

remove buggy select logic

thenatlog 8 months ago
parent
commit
7dfe856fe3
2 changed files with 50 additions and 137 deletions
  1. 48 135
      exo/main.py
  2. 2 2
      exo/tinychat/index.html

+ 48 - 135
exo/main.py

@@ -17,26 +17,18 @@ from exo.topology.ring_memory_weighted_partitioning_strategy import RingMemoryWe
 from exo.api import ChatGPTAPI
 from exo.download.shard_download import ShardDownloader, RepoProgressEvent, NoopShardDownloader
 from exo.download.hf.hf_shard_download import HFShardDownloader
-from exo.helpers import (
-    print_yellow_exo,
-    find_available_port,
-    DEBUG,
-    get_system_info,
-    get_or_create_node_id,
-    get_all_ip_addresses,
-    terminal_link,
-)
+from exo.helpers import print_yellow_exo, find_available_port, DEBUG, get_system_info, get_or_create_node_id, get_all_ip_addresses, terminal_link
 from exo.inference.shard import Shard
 from exo.inference.inference_engine import get_inference_engine, InferenceEngine
 from exo.inference.dummy_inference_engine import DummyInferenceEngine
 from exo.inference.tokenizers import resolve_tokenizer
 from exo.orchestration.node import Node
-from exo.models import model_base_shards
+from exo.models import model_base_shards  # Ensure this is correctly imported
 from exo.viz.topology_viz import TopologyViz
 
-# Parse arguments
-parser = argparse.ArgumentParser(description="Initialize GRPC Discovery and Run Inference")
-parser.add_argument("command", nargs="?", choices=["run"], default="run", help="Command to run (default: run)")
+# parse args
+parser = argparse.ArgumentParser(description="Initialize GRPC Discovery")
+parser.add_argument("command", nargs="?", choices=["run"], help="Command to run")
 parser.add_argument("model_name", nargs="?", help="Model name to run")
 parser.add_argument("--node-id", type=str, default=None, help="Node ID")
 parser.add_argument("--node-host", type=str, default="0.0.0.0", help="Node host")
@@ -46,39 +38,17 @@ parser.add_argument("--download-quick-check", action="store_true", help="Quick c
 parser.add_argument("--max-parallel-downloads", type=int, default=4, help="Max parallel downloads for model shards download")
 parser.add_argument("--prometheus-client-port", type=int, default=None, help="Prometheus client port")
 parser.add_argument("--broadcast-port", type=int, default=5678, help="Broadcast port for discovery")
-parser.add_argument(
-    "--discovery-module",
-    type=str,
-    choices=["udp", "tailscale", "manual"],
-    default="udp",
-    help="Discovery module to use",
-)
+parser.add_argument("--discovery-module", type=str, choices=["udp", "tailscale", "manual"], default="udp", help="Discovery module to use")
 parser.add_argument("--discovery-timeout", type=int, default=30, help="Discovery timeout in seconds")
 parser.add_argument("--discovery-config-path", type=str, default=None, help="Path to discovery config json file")
 parser.add_argument("--wait-for-peers", type=int, default=0, help="Number of peers to wait to connect to before starting")
 parser.add_argument("--chatgpt-api-port", type=int, default=8000, help="ChatGPT API port")
-parser.add_argument(
-    "--chatgpt-api-response-timeout",
-    type=int,
-    default=90,
-    help="ChatGPT API response timeout in seconds",
-)
+parser.add_argument("--chatgpt-api-response-timeout", type=int, default=90, help="ChatGPT API response timeout in seconds")
 parser.add_argument("--max-generate-tokens", type=int, default=10000, help="Max tokens to generate in each request")
-parser.add_argument(
-    "--inference-engine",
-    type=str,
-    choices=["mlx", "tinygrad", "dummy"],
-    default=None,
-    help="Inference engine to use (mlx, tinygrad, or dummy)",
-)
+parser.add_argument("--inference-engine", type=str, default=None, help="Inference engine to use (mlx, tinygrad, or dummy)")
 parser.add_argument("--disable-tui", action=argparse.BooleanOptionalAction, help="Disable TUI")
 parser.add_argument("--run-model", type=str, help="Specify a model to run directly")
-parser.add_argument(
-    "--prompt",
-    type=str,
-    help="Prompt for the model when using --run-model",
-    default="Who are you?",
-)
+parser.add_argument("--prompt", type=str, help="Prompt for the model when using --run-model", default="Who are you?")
 parser.add_argument("--tailscale-api-key", type=str, default=None, help="Tailscale API key")
 parser.add_argument("--tailnet-name", type=str, default=None, help="Tailnet name")
 args = parser.parse_args()
@@ -89,33 +59,12 @@ print_yellow_exo()
 system_info = get_system_info()
 print(f"Detected system: {system_info}")
 
-# Determine shard downloader based on inference engine
-shard_downloader: ShardDownloader = (
-    HFShardDownloader(quick_check=args.download_quick_check, max_parallel_downloads=args.max_parallel_downloads)
-    if args.inference_engine != "dummy"
-    else NoopShardDownloader()
-)
-
-# Determine inference engine name
+shard_downloader: ShardDownloader = HFShardDownloader(quick_check=args.download_quick_check, max_parallel_downloads=args.max_parallel_downloads) if args.inference_engine != "dummy" else NoopShardDownloader()
 inference_engine_name = args.inference_engine or ("mlx" if system_info == "Apple Silicon Mac" else "tinygrad")
 print(f"Inference engine name after selection: {inference_engine_name}")
 
 inference_engine = get_inference_engine(inference_engine_name, shard_downloader)
-print(
-    f"Using inference engine: {inference_engine.__class__.__name__} with shard downloader: {shard_downloader.__class__.__name__}"
-)
-
-# Select the first model as default if no model is specified
-available_models = list(model_base_shards.keys())
-
-if not available_models:
-    raise ValueError("No models available in model_base_shards.")
-
-default_model = available_models[0]  # Retrieve the first model
-
-if DEBUG >= 1:
-    print(f"Available models: {available_models}")
-    print(f"Default model selected: {default_model}")
+print(f"Using inference engine: {inference_engine.__class__.__name__} with shard downloader: {shard_downloader.__class__.__name__}")
 
 if args.node_port is None:
     args.node_port = find_available_port(args.node_host)
@@ -133,40 +82,16 @@ if DEBUG >= 0:
     for chatgpt_api_endpoint in chatgpt_api_endpoints:
         print(f" - {terminal_link(chatgpt_api_endpoint)}")
 
-# Initialize discovery based on the selected discovery module
 if args.discovery_module == "udp":
-    discovery = UDPDiscovery(
-        args.node_id,
-        args.node_port,
-        args.listen_port,
-        args.broadcast_port,
-        lambda peer_id, address, device_capabilities: GRPCPeerHandle(peer_id, address, device_capabilities),
-        discovery_timeout=args.discovery_timeout,
-    )
+    discovery = UDPDiscovery(args.node_id, args.node_port, args.listen_port, args.broadcast_port, lambda peer_id, address, device_capabilities: GRPCPeerHandle(peer_id, address, device_capabilities), discovery_timeout=args.discovery_timeout)
 elif args.discovery_module == "tailscale":
-    discovery = TailscaleDiscovery(
-        args.node_id,
-        args.node_port,
-        lambda peer_id, address, device_capabilities: GRPCPeerHandle(peer_id, address, device_capabilities),
-        discovery_timeout=args.discovery_timeout,
-        tailscale_api_key=args.tailscale_api_key,
-        tailnet=args.tailnet_name,
-    )
+    discovery = TailscaleDiscovery(args.node_id, args.node_port, lambda peer_id, address, device_capabilities: GRPCPeerHandle(peer_id, address, device_capabilities), discovery_timeout=args.discovery_timeout, tailscale_api_key=args.tailscale_api_key, tailnet=args.tailnet_name)
 elif args.discovery_module == "manual":
     if not args.discovery_config_path:
-        raise ValueError(
-            "--discovery-config-path is required when using manual discovery. Please provide a path to a config json file."
-        )
-    discovery = ManualDiscovery(
-        args.discovery_config_path,
-        args.node_id,
-        create_peer_handle=lambda peer_id, address, device_capabilities: GRPCPeerHandle(peer_id, address, device_capabilities),
-    )
+        raise ValueError(f"--discovery-config-path is required when using manual discovery. Please provide a path to a config json file.")
+    discovery = ManualDiscovery(args.discovery_config_path, args.node_id, create_peer_handle=lambda peer_id, address, device_capabilities: GRPCPeerHandle(peer_id, address, device_capabilities))
 
-# Initialize topology visualization if not disabled
 topology_viz = TopologyViz(chatgpt_api_endpoints=chatgpt_api_endpoints, web_chat_urls=web_chat_urls) if not args.disable_tui else None
-
-# Initialize the node
 node = StandardNode(
     args.node_id,
     None,
@@ -175,26 +100,18 @@ node = StandardNode(
     partitioning_strategy=RingMemoryWeightedPartitioningStrategy(),
     max_generate_tokens=args.max_generate_tokens,
     topology_viz=topology_viz,
-    shard_downloader=shard_downloader,
+    shard_downloader=shard_downloader
 )
-
-# Initialize the GRPC server
 server = GRPCServer(node, args.node_host, args.node_port)
 node.server = server
-
-# Initialize the ChatGPT API
 api = ChatGPTAPI(
     node,
     inference_engine.__class__.__name__,
     response_timeout=args.chatgpt_api_response_timeout,
-    on_chat_completion_request=lambda req_id, __, prompt: topology_viz.update_prompt(req_id, prompt) if topology_viz else None,
+    on_chat_completion_request=lambda req_id, __, prompt: topology_viz.update_prompt(req_id, prompt) if topology_viz else None
 )
-
-# Register token update handler for topology visualization
 node.on_token.register("update_topology_viz").on_next(
-    lambda req_id, tokens, __: topology_viz.update_prompt_output(req_id, inference_engine.tokenizer.decode(tokens))
-    if topology_viz and hasattr(inference_engine, "tokenizer")
-    else None
+    lambda req_id, tokens, __: topology_viz.update_prompt_output(req_id, inference_engine.tokenizer.decode(tokens)) if topology_viz and hasattr(inference_engine, "tokenizer") else None
 )
 
 def preemptively_start_download(request_id: str, opaque_status: str):
@@ -212,10 +129,8 @@ def preemptively_start_download(request_id: str, opaque_status: str):
 
 node.on_opaque_status.register("start_download").on_next(preemptively_start_download)
 
-# Start Prometheus metrics server if specified
 if args.prometheus_client_port:
     from exo.stats.metrics import start_metrics_server
-
     start_metrics_server(node, args.prometheus_client_port)
 
 last_broadcast_time = 0
@@ -225,24 +140,18 @@ def throttled_broadcast(shard: Shard, event: RepoProgressEvent):
     current_time = time.time()
     if event.status == "complete" or current_time - last_broadcast_time >= 0.1:
         last_broadcast_time = current_time
-        asyncio.create_task(
-            node.broadcast_opaque_status(
-                "",
-                json.dumps(
-                    {
-                        "type": "download_progress",
-                        "node_id": node.id,
-                        "progress": event.to_dict(),
-                    }
-                ),
-            )
-        )
+        asyncio.create_task(node.broadcast_opaque_status("", json.dumps({
+            "type": "download_progress",
+            "node_id": node.id,
+            "progress": event.to_dict()
+        })))
 
 shard_downloader.on_progress.register("broadcast").on_next(throttled_broadcast)
 
-async def shutdown(signal_name, loop):
+
+async def shutdown(signal, loop):
     """Gracefully shutdown the server and close the asyncio loop."""
-    print(f"Received exit signal {signal_name}...")
+    print(f"Received exit signal {signal.name}...")
     print("Thank you for using exo.")
     print_yellow_exo()
     server_tasks = [t for t in asyncio.all_tasks() if t is not asyncio.current_task()]
@@ -263,18 +172,13 @@ async def run_model_cli(node: Node, inference_engine: InferenceEngine, model_nam
     callback = node.on_token.register(callback_id)
     if topology_viz:
         topology_viz.update_prompt(request_id, prompt)
-    prompt_formatted = tokenizer.apply_chat_template(
-        [{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True
-    )
+    prompt = tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True)
 
     try:
-        print(f"Processing prompt: {prompt_formatted}")
-        await node.process_prompt(shard, prompt_formatted, None, request_id=request_id)
+        print(f"Processing prompt: {prompt}")
+        await node.process_prompt(shard, prompt, None, request_id=request_id)
 
-        _, tokens, _ = await callback.wait(
-            lambda _request_id, tokens, is_finished: _request_id == request_id and is_finished,
-            timeout=300,
-        )
+        _, tokens, _ = await callback.wait(lambda _request_id, tokens, is_finished: _request_id == request_id and is_finished, timeout=300)
 
         print("\nGenerated response:")
         print(tokenizer.decode(tokens))
@@ -287,7 +191,7 @@ async def run_model_cli(node: Node, inference_engine: InferenceEngine, model_nam
 async def main():
     loop = asyncio.get_running_loop()
 
-    # Handle exit signals
+    # Use a more direct approach to handle signals
     def handle_exit():
         asyncio.ensure_future(shutdown(signal.SIGTERM, loop))
 
@@ -297,17 +201,26 @@ async def main():
     await node.start(wait_for_peers=args.wait_for_peers)
 
     if args.command == "run" or args.run_model:
-        # Use the provided model name or default to the first model
-        model_name = args.model_name or args.run_model or default_model
-
-        # Inform the user about the default selection if no model was specified
-        if not args.model_name and not args.run_model:
-            print(f"No model specified. Defaulting to the first available model: '{default_model}'")
+        # Model selection logic updated here
+        model_name = args.model_name or args.run_model
+
+        if not model_name:
+            if model_base_shards:
+                model_name = next(iter(model_base_shards))
+                print(f"No model specified. Using the first available model: '{model_name}'")
+            else:
+                print("Error: No models are available in 'model_base_shards'.")
+                return
+
+        # Proceed with the selected model
+        shard = model_base_shards.get(model_name, {}).get(inference_engine.__class__.__name__)
+        if not shard:
+            print(f"Error: Unsupported model '{model_name}' for inference engine {inference_engine.__class__.__name__}")
+            return
 
         await run_model_cli(node, inference_engine, model_name, args.prompt)
     else:
-        # Start the ChatGPT API server as a non-blocking task
-        asyncio.create_task(api.run(port=args.chatgpt_api_port))
+        asyncio.create_task(api.run(port=args.chatgpt_api_port))  # Start the API server as a non-blocking task
         await asyncio.Event().wait()
 
 def run():

+ 2 - 2
exo/tinychat/index.html

@@ -29,8 +29,8 @@
     <div x-show="errorMessage" x-transition.opacity x-text="errorMessage" class="toast">
     </div>
 <div class="model-selector">
-<select @change="if (cstate) cstate.selectedModel = $event.target.value" x-model="cstate.selectedModel">
-<option selected="" value="llama-3.2-1b">Llama 3.2 1B</option>
+<select>
+<option value="llama-3.2-1b">Llama 3.2 1B</option>
 <option value="llama-3.2-3b">Llama 3.2 3B</option>
 <option value="llama-3.1-8b">Llama 3.1 8B</option>
 <option value="llama-3.1-70b">Llama 3.1 70B</option>