|
@@ -16,32 +16,54 @@ class MLXDynamicShardInferenceEngine(InferenceEngine):
|
|
self.shard_downloader = shard_downloader
|
|
self.shard_downloader = shard_downloader
|
|
self.model_lock = threading.Lock()
|
|
self.model_lock = threading.Lock()
|
|
self.executor = ThreadPoolExecutor(max_workers=1)
|
|
self.executor = ThreadPoolExecutor(max_workers=1)
|
|
|
|
+ self.inference_queue = asyncio.Queue()
|
|
|
|
+ self._worker_task = None
|
|
|
|
+
|
|
|
|
+ async def _ensure_worker(self):
|
|
|
|
+ if self._worker_task is None:
|
|
|
|
+ self._worker_task = asyncio.create_task(self._inference_worker())
|
|
|
|
|
|
async def infer_prompt(self, request_id: str, shard: Shard, prompt: str, image_str: Optional[str] = None, inference_state: Optional[str] = None) -> (np.ndarray, str, bool):
|
|
async def infer_prompt(self, request_id: str, shard: Shard, prompt: str, image_str: Optional[str] = None, inference_state: Optional[str] = None) -> (np.ndarray, str, bool):
|
|
await self.ensure_shard(shard)
|
|
await self.ensure_shard(shard)
|
|
|
|
+ await self._ensure_worker()
|
|
|
|
+
|
|
if image_str:
|
|
if image_str:
|
|
image = await get_image_from_str(image_str)
|
|
image = await get_image_from_str(image_str)
|
|
inputs = self.tokenizer(prompt, image, return_tensors="np")
|
|
inputs = self.tokenizer(prompt, image, return_tensors="np")
|
|
pixel_values = mx.array(inputs["pixel_values"])
|
|
pixel_values = mx.array(inputs["pixel_values"])
|
|
input_ids = mx.array(inputs["input_ids"])
|
|
input_ids = mx.array(inputs["input_ids"])
|
|
- output_data = await self._run_inference(request_id, input_ids, pixel_values)
|
|
|
|
|
|
+ output_data = await self._queue_inference(request_id, input_ids, pixel_values)
|
|
else:
|
|
else:
|
|
input_ids = mx.array(self.tokenizer.encode(prompt))
|
|
input_ids = mx.array(self.tokenizer.encode(prompt))
|
|
- output_data = await self._run_inference(request_id, input_ids)
|
|
|
|
|
|
+ output_data = await self._queue_inference(request_id, input_ids)
|
|
return output_data, "", output_data.size == 1 and output_data.item() == self.tokenizer.eos_token_id
|
|
return output_data, "", output_data.size == 1 and output_data.item() == self.tokenizer.eos_token_id
|
|
|
|
|
|
async def infer_tensor(self, request_id: str, shard: Shard, input_data: np.ndarray, inference_state: Optional[str] = None) -> (np.ndarray, str, bool):
|
|
async def infer_tensor(self, request_id: str, shard: Shard, input_data: np.ndarray, inference_state: Optional[str] = None) -> (np.ndarray, str, bool):
|
|
await self.ensure_shard(shard)
|
|
await self.ensure_shard(shard)
|
|
|
|
+ await self._ensure_worker()
|
|
|
|
+
|
|
input_tensor = mx.array(input_data)
|
|
input_tensor = mx.array(input_data)
|
|
- output_data = await self._run_inference(request_id, input_tensor)
|
|
|
|
|
|
+ output_data = await self._queue_inference(request_id, input_tensor)
|
|
return output_data, "", output_data.size == 1 and output_data.item() == self.tokenizer.eos_token_id
|
|
return output_data, "", output_data.size == 1 and output_data.item() == self.tokenizer.eos_token_id
|
|
|
|
|
|
- async def _run_inference(self, request_id: str, *args):
|
|
|
|
- with self.model_lock:
|
|
|
|
- return await asyncio.get_event_loop().run_in_executor(
|
|
|
|
- self.executor,
|
|
|
|
- lambda: np.array(self.stateful_sharded_model.step(request_id, *args))
|
|
|
|
- )
|
|
|
|
|
|
+ async def _queue_inference(self, request_id: str, *args):
|
|
|
|
+ future = asyncio.get_running_loop().create_future()
|
|
|
|
+ await self.inference_queue.put((future, request_id, args))
|
|
|
|
+ return await future
|
|
|
|
+
|
|
|
|
+ async def _inference_worker(self):
|
|
|
|
+ while True:
|
|
|
|
+ future, request_id, args = await self.inference_queue.get()
|
|
|
|
+ try:
|
|
|
|
+ result = await asyncio.get_running_loop().run_in_executor(
|
|
|
|
+ self.executor,
|
|
|
|
+ lambda: np.array(self.stateful_sharded_model.step(request_id, *args))
|
|
|
|
+ )
|
|
|
|
+ future.set_result(result)
|
|
|
|
+ except Exception as e:
|
|
|
|
+ future.set_exception(e)
|
|
|
|
+ finally:
|
|
|
|
+ self.inference_queue.task_done()
|
|
|
|
|
|
async def ensure_shard(self, shard: Shard):
|
|
async def ensure_shard(self, shard: Shard):
|
|
if self.shard == shard:
|
|
if self.shard == shard:
|