spi_flash_sfud.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2016-09-28 armink first version.
  9. */
  10. #include <stdint.h>
  11. #include <rtdevice.h>
  12. #include "spi_flash.h"
  13. #include "spi_flash_sfud.h"
  14. #ifdef RT_USING_SFUD
  15. #ifndef RT_SFUD_DEFAULT_SPI_CFG
  16. #ifndef RT_SFUD_SPI_MAX_HZ
  17. #define RT_SFUD_SPI_MAX_HZ 50000000
  18. #endif
  19. /* read the JEDEC SFDP command must run at 50 MHz or less */
  20. #define RT_SFUD_DEFAULT_SPI_CFG \
  21. { \
  22. .mode = RT_SPI_MODE_0 | RT_SPI_MSB, \
  23. .data_width = 8, \
  24. .max_hz = RT_SFUD_SPI_MAX_HZ, \
  25. }
  26. #endif /* RT_SFUD_DEFAULT_SPI_CFG */
  27. #ifdef SFUD_USING_QSPI
  28. #define RT_SFUD_DEFAULT_QSPI_CFG \
  29. { \
  30. RT_SFUD_DEFAULT_SPI_CFG, \
  31. .medium_size = 0x800000, \
  32. .ddr_mode = 0, \
  33. .qspi_dl_width = 4, \
  34. }
  35. #endif /* SFUD_USING_QSPI */
  36. static rt_err_t rt_sfud_control(rt_device_t dev, int cmd, void *args) {
  37. RT_ASSERT(dev);
  38. switch (cmd) {
  39. case RT_DEVICE_CTRL_BLK_GETGEOME: {
  40. struct rt_device_blk_geometry *geometry = (struct rt_device_blk_geometry *) args;
  41. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  42. if (rtt_dev == RT_NULL || geometry == RT_NULL) {
  43. return -RT_ERROR;
  44. }
  45. geometry->bytes_per_sector = rtt_dev->geometry.bytes_per_sector;
  46. geometry->sector_count = rtt_dev->geometry.sector_count;
  47. geometry->block_size = rtt_dev->geometry.block_size;
  48. break;
  49. }
  50. case RT_DEVICE_CTRL_BLK_ERASE: {
  51. rt_uint32_t *addrs = (rt_uint32_t *) args, start_addr = addrs[0], end_addr = addrs[1], phy_start_addr;
  52. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  53. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  54. rt_size_t phy_size;
  55. if (addrs == RT_NULL || start_addr > end_addr || rtt_dev == RT_NULL || sfud_dev == RT_NULL) {
  56. return -RT_ERROR;
  57. }
  58. if (end_addr == start_addr) {
  59. end_addr ++;
  60. }
  61. phy_start_addr = start_addr * rtt_dev->geometry.bytes_per_sector;
  62. phy_size = (end_addr - start_addr) * rtt_dev->geometry.bytes_per_sector;
  63. if (sfud_erase(sfud_dev, phy_start_addr, phy_size) != SFUD_SUCCESS) {
  64. return -RT_ERROR;
  65. }
  66. break;
  67. }
  68. }
  69. return RT_EOK;
  70. }
  71. static rt_size_t rt_sfud_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) {
  72. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  73. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  74. RT_ASSERT(dev);
  75. RT_ASSERT(rtt_dev);
  76. RT_ASSERT(sfud_dev);
  77. /* change the block device's logic address to physical address */
  78. rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
  79. rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
  80. if (sfud_read(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
  81. return 0;
  82. } else {
  83. return size;
  84. }
  85. }
  86. static rt_size_t rt_sfud_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) {
  87. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  88. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  89. RT_ASSERT(dev);
  90. RT_ASSERT(rtt_dev);
  91. RT_ASSERT(sfud_dev);
  92. /* change the block device's logic address to physical address */
  93. rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
  94. rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
  95. if (sfud_erase_write(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
  96. return 0;
  97. } else {
  98. return size;
  99. }
  100. }
  101. /**
  102. * SPI write data then read data
  103. */
  104. static sfud_err spi_write_read(const sfud_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf,
  105. size_t read_size) {
  106. sfud_err result = SFUD_SUCCESS;
  107. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  108. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  109. RT_ASSERT(spi);
  110. RT_ASSERT(sfud_dev);
  111. RT_ASSERT(rtt_dev);
  112. #ifdef SFUD_USING_QSPI
  113. struct rt_qspi_device *qspi_dev = RT_NULL;
  114. #endif
  115. if (write_size) {
  116. RT_ASSERT(write_buf);
  117. }
  118. if (read_size) {
  119. RT_ASSERT(read_buf);
  120. }
  121. #ifdef SFUD_USING_QSPI
  122. if(rtt_dev->rt_spi_device->bus->mode & RT_SPI_BUS_MODE_QSPI) {
  123. qspi_dev = (struct rt_qspi_device *) (rtt_dev->rt_spi_device);
  124. if (write_size && read_size) {
  125. if (rt_qspi_send_then_recv(qspi_dev, write_buf, write_size, read_buf, read_size) <= 0) {
  126. result = SFUD_ERR_TIMEOUT;
  127. }
  128. } else if (write_size) {
  129. if (rt_qspi_send(qspi_dev, write_buf, write_size) <= 0) {
  130. result = SFUD_ERR_TIMEOUT;
  131. }
  132. }
  133. }
  134. else
  135. #endif
  136. {
  137. if (write_size && read_size) {
  138. if (rt_spi_send_then_recv(rtt_dev->rt_spi_device, write_buf, write_size, read_buf, read_size) != RT_EOK) {
  139. result = SFUD_ERR_TIMEOUT;
  140. }
  141. } else if (write_size) {
  142. if (rt_spi_send(rtt_dev->rt_spi_device, write_buf, write_size) <= 0) {
  143. result = SFUD_ERR_TIMEOUT;
  144. }
  145. } else {
  146. if (rt_spi_recv(rtt_dev->rt_spi_device, read_buf, read_size) <= 0) {
  147. result = SFUD_ERR_TIMEOUT;
  148. }
  149. }
  150. }
  151. return result;
  152. }
  153. #ifdef SFUD_USING_QSPI
  154. /**
  155. * QSPI fast read data
  156. */
  157. static sfud_err qspi_read(const struct __sfud_spi *spi, uint32_t addr, sfud_qspi_read_cmd_format *qspi_read_cmd_format, uint8_t *read_buf, size_t read_size) {
  158. struct rt_qspi_message message;
  159. sfud_err result = SFUD_SUCCESS;
  160. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  161. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  162. struct rt_qspi_device *qspi_dev = (struct rt_qspi_device *) (rtt_dev->rt_spi_device);
  163. RT_ASSERT(spi);
  164. RT_ASSERT(sfud_dev);
  165. RT_ASSERT(rtt_dev);
  166. RT_ASSERT(qspi_dev);
  167. /* set message struct */
  168. message.instruction.content = qspi_read_cmd_format->instruction;
  169. message.instruction.qspi_lines = qspi_read_cmd_format->instruction_lines;
  170. message.address.content = addr;
  171. message.address.size = qspi_read_cmd_format->address_size;
  172. message.address.qspi_lines = qspi_read_cmd_format->address_lines;
  173. message.alternate_bytes.content = 0;
  174. message.alternate_bytes.size = 0;
  175. message.alternate_bytes.qspi_lines = 0;
  176. message.dummy_cycles = qspi_read_cmd_format->dummy_cycles;
  177. message.parent.send_buf = RT_NULL;
  178. message.parent.recv_buf = read_buf;
  179. message.parent.length = read_size;
  180. message.parent.cs_release = 1;
  181. message.parent.cs_take = 1;
  182. message.qspi_data_lines = qspi_read_cmd_format->data_lines;
  183. if (rt_qspi_transfer_message(qspi_dev, &message) != read_size) {
  184. result = SFUD_ERR_TIMEOUT;
  185. }
  186. return result;
  187. }
  188. #endif
  189. static void spi_lock(const sfud_spi *spi) {
  190. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  191. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  192. RT_ASSERT(spi);
  193. RT_ASSERT(sfud_dev);
  194. RT_ASSERT(rtt_dev);
  195. rt_mutex_take(&(rtt_dev->lock), RT_WAITING_FOREVER);
  196. }
  197. static void spi_unlock(const sfud_spi *spi) {
  198. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  199. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  200. RT_ASSERT(spi);
  201. RT_ASSERT(sfud_dev);
  202. RT_ASSERT(rtt_dev);
  203. rt_mutex_release(&(rtt_dev->lock));
  204. }
  205. static void retry_delay_100us(void) {
  206. /* 100 microsecond delay */
  207. rt_thread_delay((RT_TICK_PER_SECOND * 1 + 9999) / 10000);
  208. }
  209. sfud_err sfud_spi_port_init(sfud_flash *flash) {
  210. sfud_err result = SFUD_SUCCESS;
  211. RT_ASSERT(flash);
  212. /* port SPI device interface */
  213. flash->spi.wr = spi_write_read;
  214. #ifdef SFUD_USING_QSPI
  215. flash->spi.qspi_read = qspi_read;
  216. #endif
  217. flash->spi.lock = spi_lock;
  218. flash->spi.unlock = spi_unlock;
  219. flash->spi.user_data = flash;
  220. if (RT_TICK_PER_SECOND < 1000) {
  221. LOG_W("[SFUD] Warning: The OS tick(%d) is less than 1000. So the flash write will take more time.", RT_TICK_PER_SECOND);
  222. }
  223. /* 100 microsecond delay */
  224. flash->retry.delay = retry_delay_100us;
  225. /* 60 seconds timeout */
  226. flash->retry.times = 60 * 10000;
  227. return result;
  228. }
  229. #ifdef RT_USING_DEVICE_OPS
  230. const static struct rt_device_ops flash_device_ops =
  231. {
  232. RT_NULL,
  233. RT_NULL,
  234. RT_NULL,
  235. rt_sfud_read,
  236. rt_sfud_write,
  237. rt_sfud_control
  238. };
  239. #endif
  240. /**
  241. * Probe SPI flash by SFUD (Serial Flash Universal Driver) driver library and though SPI device by specified configuration.
  242. *
  243. * @param spi_flash_dev_name the name which will create SPI flash device
  244. * @param spi_dev_name using SPI device name
  245. * @param spi_cfg SPI device configuration
  246. * @param qspi_cfg QSPI device configuration
  247. *
  248. * @return probed SPI flash device, probe failed will return RT_NULL
  249. */
  250. rt_spi_flash_device_t rt_sfud_flash_probe_ex(const char *spi_flash_dev_name, const char *spi_dev_name,
  251. struct rt_spi_configuration *spi_cfg, struct rt_qspi_configuration *qspi_cfg)
  252. {
  253. rt_spi_flash_device_t rtt_dev = RT_NULL;
  254. sfud_flash *sfud_dev = RT_NULL;
  255. char *spi_flash_dev_name_bak = RT_NULL, *spi_dev_name_bak = RT_NULL;
  256. extern sfud_err sfud_device_init(sfud_flash *flash);
  257. #ifdef SFUD_USING_QSPI
  258. struct rt_qspi_device *qspi_dev = RT_NULL;
  259. #endif
  260. RT_ASSERT(spi_flash_dev_name);
  261. RT_ASSERT(spi_dev_name);
  262. rtt_dev = (rt_spi_flash_device_t) rt_malloc(sizeof(struct spi_flash_device));
  263. sfud_dev = (sfud_flash_t) rt_malloc(sizeof(sfud_flash));
  264. spi_flash_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_flash_dev_name) + 1);
  265. spi_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_dev_name) + 1);
  266. if (rtt_dev) {
  267. rt_memset(rtt_dev, 0, sizeof(struct spi_flash_device));
  268. /* initialize lock */
  269. rt_mutex_init(&(rtt_dev->lock), spi_flash_dev_name, RT_IPC_FLAG_FIFO);
  270. }
  271. if (rtt_dev && sfud_dev && spi_flash_dev_name_bak && spi_dev_name_bak) {
  272. rt_memset(sfud_dev, 0, sizeof(sfud_flash));
  273. rt_strncpy(spi_flash_dev_name_bak, spi_flash_dev_name, rt_strlen(spi_flash_dev_name));
  274. rt_strncpy(spi_dev_name_bak, spi_dev_name, rt_strlen(spi_dev_name));
  275. /* make string end sign */
  276. spi_flash_dev_name_bak[rt_strlen(spi_flash_dev_name)] = '\0';
  277. spi_dev_name_bak[rt_strlen(spi_dev_name)] = '\0';
  278. /* SPI configure */
  279. {
  280. /* RT-Thread SPI device initialize */
  281. rtt_dev->rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
  282. if (rtt_dev->rt_spi_device == RT_NULL || rtt_dev->rt_spi_device->parent.type != RT_Device_Class_SPIDevice) {
  283. LOG_E("ERROR: SPI device %s not found!", spi_dev_name);
  284. goto error;
  285. }
  286. sfud_dev->spi.name = spi_dev_name_bak;
  287. #ifdef SFUD_USING_QSPI
  288. /* set the qspi line number and configure the QSPI bus */
  289. if(rtt_dev->rt_spi_device->bus->mode &RT_SPI_BUS_MODE_QSPI) {
  290. qspi_dev = (struct rt_qspi_device *)rtt_dev->rt_spi_device;
  291. qspi_cfg->qspi_dl_width = qspi_dev->config.qspi_dl_width;
  292. rt_qspi_configure(qspi_dev, qspi_cfg);
  293. }
  294. else
  295. #endif
  296. rt_spi_configure(rtt_dev->rt_spi_device, spi_cfg);
  297. }
  298. /* SFUD flash device initialize */
  299. {
  300. sfud_dev->name = spi_flash_dev_name_bak;
  301. /* accessed each other */
  302. rtt_dev->user_data = sfud_dev;
  303. rtt_dev->rt_spi_device->user_data = rtt_dev;
  304. rtt_dev->flash_device.user_data = rtt_dev;
  305. sfud_dev->user_data = rtt_dev;
  306. /* initialize SFUD device */
  307. if (sfud_device_init(sfud_dev) != SFUD_SUCCESS) {
  308. LOG_E("ERROR: SPI flash probe failed by SPI device %s.", spi_dev_name);
  309. goto error;
  310. }
  311. /* when initialize success, then copy SFUD flash device's geometry to RT-Thread SPI flash device */
  312. rtt_dev->geometry.sector_count = sfud_dev->chip.capacity / sfud_dev->chip.erase_gran;
  313. rtt_dev->geometry.bytes_per_sector = sfud_dev->chip.erase_gran;
  314. rtt_dev->geometry.block_size = sfud_dev->chip.erase_gran;
  315. #ifdef SFUD_USING_QSPI
  316. /* reconfigure the QSPI bus for medium size */
  317. if(rtt_dev->rt_spi_device->bus->mode &RT_SPI_BUS_MODE_QSPI) {
  318. qspi_cfg->medium_size = sfud_dev->chip.capacity;
  319. rt_qspi_configure(qspi_dev, qspi_cfg);
  320. if(qspi_dev->enter_qspi_mode != RT_NULL)
  321. qspi_dev->enter_qspi_mode(qspi_dev);
  322. /* set data lines width */
  323. sfud_qspi_fast_read_enable(sfud_dev, qspi_dev->config.qspi_dl_width);
  324. }
  325. #endif /* SFUD_USING_QSPI */
  326. }
  327. /* register device */
  328. rtt_dev->flash_device.type = RT_Device_Class_Block;
  329. #ifdef RT_USING_DEVICE_OPS
  330. rtt_dev->flash_device.ops = &flash_device_ops;
  331. #else
  332. rtt_dev->flash_device.init = RT_NULL;
  333. rtt_dev->flash_device.open = RT_NULL;
  334. rtt_dev->flash_device.close = RT_NULL;
  335. rtt_dev->flash_device.read = rt_sfud_read;
  336. rtt_dev->flash_device.write = rt_sfud_write;
  337. rtt_dev->flash_device.control = rt_sfud_control;
  338. #endif
  339. rt_device_register(&(rtt_dev->flash_device), spi_flash_dev_name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
  340. LOG_I("Probe SPI flash %s by SPI device %s success.",spi_flash_dev_name, spi_dev_name);
  341. return rtt_dev;
  342. } else {
  343. LOG_E("ERROR: Low memory.");
  344. goto error;
  345. }
  346. error:
  347. if (rtt_dev) {
  348. rt_mutex_detach(&(rtt_dev->lock));
  349. }
  350. /* may be one of objects memory was malloc success, so need free all */
  351. rt_free(rtt_dev);
  352. rt_free(sfud_dev);
  353. rt_free(spi_flash_dev_name_bak);
  354. rt_free(spi_dev_name_bak);
  355. return RT_NULL;
  356. }
  357. /**
  358. * Probe SPI flash by SFUD(Serial Flash Universal Driver) driver library and though SPI device.
  359. *
  360. * @param spi_flash_dev_name the name which will create SPI flash device
  361. * @param spi_dev_name using SPI device name
  362. *
  363. * @return probed SPI flash device, probe failed will return RT_NULL
  364. */
  365. rt_spi_flash_device_t rt_sfud_flash_probe(const char *spi_flash_dev_name, const char *spi_dev_name)
  366. {
  367. struct rt_spi_configuration cfg = RT_SFUD_DEFAULT_SPI_CFG;
  368. #ifndef SFUD_USING_QSPI
  369. return rt_sfud_flash_probe_ex(spi_flash_dev_name, spi_dev_name, &cfg, RT_NULL);
  370. #else
  371. struct rt_qspi_configuration qspi_cfg = RT_SFUD_DEFAULT_QSPI_CFG;
  372. return rt_sfud_flash_probe_ex(spi_flash_dev_name, spi_dev_name, &cfg, &qspi_cfg);
  373. #endif
  374. }
  375. /**
  376. * Delete SPI flash device
  377. *
  378. * @param spi_flash_dev SPI flash device
  379. *
  380. * @return the operation status, RT_EOK on successful
  381. */
  382. rt_err_t rt_sfud_flash_delete(rt_spi_flash_device_t spi_flash_dev) {
  383. sfud_flash *sfud_flash_dev = (sfud_flash *) (spi_flash_dev->user_data);
  384. RT_ASSERT(spi_flash_dev);
  385. RT_ASSERT(sfud_flash_dev);
  386. rt_device_unregister(&(spi_flash_dev->flash_device));
  387. rt_mutex_detach(&(spi_flash_dev->lock));
  388. rt_free(sfud_flash_dev->spi.name);
  389. rt_free(sfud_flash_dev->name);
  390. rt_free(sfud_flash_dev);
  391. rt_free(spi_flash_dev);
  392. return RT_EOK;
  393. }
  394. sfud_flash_t rt_sfud_flash_find(const char *spi_dev_name)
  395. {
  396. rt_spi_flash_device_t rtt_dev = RT_NULL;
  397. struct rt_spi_device *rt_spi_device = RT_NULL;
  398. sfud_flash_t sfud_dev = RT_NULL;
  399. rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
  400. if (rt_spi_device == RT_NULL || rt_spi_device->parent.type != RT_Device_Class_SPIDevice) {
  401. LOG_E("ERROR: SPI device %s not found!", spi_dev_name);
  402. goto __error;
  403. }
  404. rtt_dev = (rt_spi_flash_device_t) (rt_spi_device->user_data);
  405. if (rtt_dev && rtt_dev->user_data) {
  406. sfud_dev = (sfud_flash_t) (rtt_dev->user_data);
  407. return sfud_dev;
  408. } else {
  409. LOG_E("ERROR: SFUD flash device not found!");
  410. goto __error;
  411. }
  412. __error:
  413. return RT_NULL;
  414. }
  415. sfud_flash_t rt_sfud_flash_find_by_dev_name(const char *flash_dev_name)
  416. {
  417. rt_spi_flash_device_t rtt_dev = RT_NULL;
  418. sfud_flash_t sfud_dev = RT_NULL;
  419. rtt_dev = (rt_spi_flash_device_t) rt_device_find(flash_dev_name);
  420. if (rtt_dev == RT_NULL || rtt_dev->flash_device.type != RT_Device_Class_Block) {
  421. LOG_E("ERROR: Flash device %s not found!", flash_dev_name);
  422. goto __error;
  423. }
  424. if (rtt_dev->user_data) {
  425. sfud_dev = (sfud_flash_t) (rtt_dev->user_data);
  426. return sfud_dev;
  427. } else {
  428. LOG_E("ERROR: SFUD flash device not found!");
  429. goto __error;
  430. }
  431. __error:
  432. return RT_NULL;
  433. }
  434. #if defined(RT_USING_FINSH) && defined(FINSH_USING_MSH)
  435. #include <finsh.h>
  436. static void sf(uint8_t argc, char **argv) {
  437. #define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
  438. #define HEXDUMP_WIDTH 16
  439. #define CMD_PROBE_INDEX 0
  440. #define CMD_READ_INDEX 1
  441. #define CMD_WRITE_INDEX 2
  442. #define CMD_ERASE_INDEX 3
  443. #define CMD_RW_STATUS_INDEX 4
  444. #define CMD_BENCH_INDEX 5
  445. sfud_err result = SFUD_SUCCESS;
  446. static const sfud_flash *sfud_dev = NULL;
  447. static rt_spi_flash_device_t rtt_dev = NULL, rtt_dev_bak = NULL;
  448. size_t i = 0, j = 0;
  449. const char* sf_help_info[] = {
  450. [CMD_PROBE_INDEX] = "sf probe [spi_device] - probe and init SPI flash by given 'spi_device'",
  451. [CMD_READ_INDEX] = "sf read addr size - read 'size' bytes starting at 'addr'",
  452. [CMD_WRITE_INDEX] = "sf write addr data1 ... dataN - write some bytes 'data' to flash starting at 'addr'",
  453. [CMD_ERASE_INDEX] = "sf erase addr size - erase 'size' bytes starting at 'addr'",
  454. [CMD_RW_STATUS_INDEX] = "sf status [<volatile> <status>] - read or write '1:volatile|0:non-volatile' 'status'",
  455. [CMD_BENCH_INDEX] = "sf bench - full chip benchmark. DANGER: It will erase full chip!",
  456. };
  457. if (argc < 2) {
  458. rt_kprintf("Usage:\n");
  459. for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
  460. rt_kprintf("%s\n", sf_help_info[i]);
  461. }
  462. rt_kprintf("\n");
  463. } else {
  464. const char *operator = argv[1];
  465. uint32_t addr, size;
  466. if (!strcmp(operator, "probe")) {
  467. if (argc < 3) {
  468. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_PROBE_INDEX]);
  469. } else {
  470. char *spi_dev_name = argv[2];
  471. rtt_dev_bak = rtt_dev;
  472. /* delete the old SPI flash device */
  473. if(rtt_dev_bak) {
  474. rt_sfud_flash_delete(rtt_dev_bak);
  475. }
  476. rtt_dev = rt_sfud_flash_probe("sf_cmd", spi_dev_name);
  477. if (!rtt_dev) {
  478. return;
  479. }
  480. sfud_dev = (sfud_flash_t)rtt_dev->user_data;
  481. if (sfud_dev->chip.capacity < 1024 * 1024) {
  482. rt_kprintf("%d KB %s is current selected device.\n", sfud_dev->chip.capacity / 1024, sfud_dev->name);
  483. } else {
  484. rt_kprintf("%d MB %s is current selected device.\n", sfud_dev->chip.capacity / 1024 / 1024,
  485. sfud_dev->name);
  486. }
  487. }
  488. } else {
  489. if (!sfud_dev) {
  490. rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
  491. return;
  492. }
  493. if (!rt_strcmp(operator, "read")) {
  494. if (argc < 4) {
  495. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_READ_INDEX]);
  496. return;
  497. } else {
  498. addr = strtol(argv[2], NULL, 0);
  499. size = strtol(argv[3], NULL, 0);
  500. uint8_t *data = rt_malloc(size);
  501. if (data) {
  502. result = sfud_read(sfud_dev, addr, size, data);
  503. if (result == SFUD_SUCCESS) {
  504. rt_kprintf("Read the %s flash data success. Start from 0x%08X, size is %ld. The data is:\n",
  505. sfud_dev->name, addr, size);
  506. rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n");
  507. for (i = 0; i < size; i += HEXDUMP_WIDTH)
  508. {
  509. rt_kprintf("[%08X] ", addr + i);
  510. /* dump hex */
  511. for (j = 0; j < HEXDUMP_WIDTH; j++) {
  512. if (i + j < size) {
  513. rt_kprintf("%02X ", data[i + j]);
  514. } else {
  515. rt_kprintf(" ");
  516. }
  517. }
  518. /* dump char for hex */
  519. for (j = 0; j < HEXDUMP_WIDTH; j++) {
  520. if (i + j < size) {
  521. rt_kprintf("%c", __is_print(data[i + j]) ? data[i + j] : '.');
  522. }
  523. }
  524. rt_kprintf("\n");
  525. }
  526. rt_kprintf("\n");
  527. }
  528. rt_free(data);
  529. } else {
  530. rt_kprintf("Low memory!\n");
  531. }
  532. }
  533. } else if (!rt_strcmp(operator, "write")) {
  534. if (argc < 4) {
  535. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_WRITE_INDEX]);
  536. return;
  537. } else {
  538. addr = strtol(argv[2], NULL, 0);
  539. size = argc - 3;
  540. uint8_t *data = rt_malloc(size);
  541. if (data) {
  542. for (i = 0; i < size; i++) {
  543. data[i] = strtol(argv[3 + i], NULL, 0);
  544. }
  545. result = sfud_write(sfud_dev, addr, size, data);
  546. if (result == SFUD_SUCCESS) {
  547. rt_kprintf("Write the %s flash data success. Start from 0x%08X, size is %ld.\n",
  548. sfud_dev->name, addr, size);
  549. rt_kprintf("Write data: ");
  550. for (i = 0; i < size; i++) {
  551. rt_kprintf("%d ", data[i]);
  552. }
  553. rt_kprintf(".\n");
  554. }
  555. rt_free(data);
  556. } else {
  557. rt_kprintf("Low memory!\n");
  558. }
  559. }
  560. } else if (!rt_strcmp(operator, "erase")) {
  561. if (argc < 4) {
  562. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_ERASE_INDEX]);
  563. return;
  564. } else {
  565. addr = strtol(argv[2], NULL, 0);
  566. size = strtol(argv[3], NULL, 0);
  567. result = sfud_erase(sfud_dev, addr, size);
  568. if (result == SFUD_SUCCESS) {
  569. rt_kprintf("Erase the %s flash data success. Start from 0x%08X, size is %ld.\n", sfud_dev->name,
  570. addr, size);
  571. }
  572. }
  573. } else if (!rt_strcmp(operator, "status")) {
  574. if (argc < 3) {
  575. uint8_t status;
  576. result = sfud_read_status(sfud_dev, &status);
  577. if (result == SFUD_SUCCESS) {
  578. rt_kprintf("The %s flash status register current value is 0x%02X.\n", sfud_dev->name, status);
  579. }
  580. } else if (argc == 4) {
  581. bool is_volatile = strtol(argv[2], NULL, 0);
  582. uint8_t status = strtol(argv[3], NULL, 0);
  583. result = sfud_write_status(sfud_dev, is_volatile, status);
  584. if (result == SFUD_SUCCESS) {
  585. rt_kprintf("Write the %s flash status register to 0x%02X success.\n", sfud_dev->name, status);
  586. }
  587. } else {
  588. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_RW_STATUS_INDEX]);
  589. return;
  590. }
  591. } else if (!rt_strcmp(operator, "bench")) {
  592. if ((argc > 2 && rt_strcmp(argv[2], "yes")) || argc < 3) {
  593. rt_kprintf("DANGER: It will erase full chip! Please run 'sf bench yes'.\n");
  594. return;
  595. }
  596. /* full chip benchmark test */
  597. addr = 0;
  598. size = sfud_dev->chip.capacity;
  599. uint32_t start_time, time_cast;
  600. size_t write_size = SFUD_WRITE_MAX_PAGE_SIZE, read_size = SFUD_WRITE_MAX_PAGE_SIZE, cur_op_size;
  601. uint8_t *write_data = rt_malloc(write_size), *read_data = rt_malloc(read_size);
  602. if (write_data && read_data) {
  603. for (i = 0; i < write_size; i ++) {
  604. write_data[i] = i & 0xFF;
  605. }
  606. /* benchmark testing */
  607. rt_kprintf("Erasing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  608. start_time = rt_tick_get();
  609. result = sfud_erase(sfud_dev, addr, size);
  610. if (result == SFUD_SUCCESS) {
  611. time_cast = rt_tick_get() - start_time;
  612. rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  613. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  614. } else {
  615. rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result);
  616. }
  617. /* write test */
  618. rt_kprintf("Writing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  619. start_time = rt_tick_get();
  620. for (i = 0; i < size; i += write_size) {
  621. if (i + write_size <= size) {
  622. cur_op_size = write_size;
  623. } else {
  624. cur_op_size = size - i;
  625. }
  626. result = sfud_write(sfud_dev, addr + i, cur_op_size, write_data);
  627. if (result != SFUD_SUCCESS) {
  628. rt_kprintf("Writing %s failed, already wr for %lu bytes, write %d each time\n", sfud_dev->name, i, write_size);
  629. break;
  630. }
  631. }
  632. if (result == SFUD_SUCCESS) {
  633. time_cast = rt_tick_get() - start_time;
  634. rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  635. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  636. } else {
  637. rt_kprintf("Write benchmark has an error. Error code: %d.\n", result);
  638. }
  639. /* read test */
  640. rt_kprintf("Reading the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  641. start_time = rt_tick_get();
  642. for (i = 0; i < size; i += read_size) {
  643. if (i + read_size <= size) {
  644. cur_op_size = read_size;
  645. } else {
  646. cur_op_size = size - i;
  647. }
  648. result = sfud_read(sfud_dev, addr + i, cur_op_size, read_data);
  649. /* data check */
  650. if (memcmp(write_data, read_data, cur_op_size))
  651. {
  652. rt_kprintf("Data check ERROR! Please check you flash by other command.\n");
  653. result = SFUD_ERR_READ;
  654. }
  655. if (result != SFUD_SUCCESS) {
  656. rt_kprintf("Read %s failed, already rd for %lu bytes, read %d each time\n", sfud_dev->name, i, read_size);
  657. break;
  658. }
  659. }
  660. if (result == SFUD_SUCCESS) {
  661. time_cast = rt_tick_get() - start_time;
  662. rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  663. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  664. } else {
  665. rt_kprintf("Read benchmark has an error. Error code: %d.\n", result);
  666. }
  667. } else {
  668. rt_kprintf("Low memory!\n");
  669. }
  670. rt_free(write_data);
  671. rt_free(read_data);
  672. } else {
  673. rt_kprintf("Usage:\n");
  674. for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
  675. rt_kprintf("%s\n", sf_help_info[i]);
  676. }
  677. rt_kprintf("\n");
  678. return;
  679. }
  680. if (result != SFUD_SUCCESS) {
  681. rt_kprintf("This flash operate has an error. Error code: %d.\n", result);
  682. }
  683. }
  684. }
  685. }
  686. MSH_CMD_EXPORT(sf, SPI Flash operate.);
  687. #endif /* defined(RT_USING_FINSH) && defined(FINSH_USING_MSH) */
  688. #endif /* RT_USING_SFUD */