drv_sdio.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590
  1. /*
  2. * File : drv_sdio.c
  3. * Copyright (c) 2006-2021, RT-Thread Development Team
  4. *
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Change Logs:
  8. * Date Author Notes
  9. * 2019-07-29 zdzn first version
  10. */
  11. #include "drv_sdio.h"
  12. static rt_uint32_t sdCommandTable[] = {
  13. SD_CMD_INDEX(0),
  14. SD_CMD_RESERVED(1),
  15. SD_CMD_INDEX(2) | SD_RESP_R2,
  16. SD_CMD_INDEX(3) | SD_RESP_R1,
  17. SD_CMD_INDEX(4),
  18. SD_CMD_RESERVED(5), //SD_CMD_INDEX(5) | SD_RESP_R4,
  19. SD_CMD_INDEX(6) | SD_RESP_R1,
  20. SD_CMD_INDEX(7) | SD_RESP_R1b,
  21. SD_CMD_INDEX(8) | SD_RESP_R1,
  22. SD_CMD_INDEX(9) | SD_RESP_R2,
  23. SD_CMD_INDEX(10) | SD_RESP_R2,
  24. SD_CMD_INDEX(11) | SD_RESP_R1,
  25. SD_CMD_INDEX(12) | SD_RESP_R1b | SD_CMD_TYPE_ABORT,
  26. SD_CMD_INDEX(13) | SD_RESP_R1,
  27. SD_CMD_RESERVED(14),
  28. SD_CMD_INDEX(15),
  29. SD_CMD_INDEX(16) | SD_RESP_R1,
  30. SD_CMD_INDEX(17) | SD_RESP_R1 | SD_DATA_READ,
  31. SD_CMD_INDEX(18) | SD_RESP_R1 | SD_DATA_READ | SD_CMD_MULTI_BLOCK | SD_CMD_BLKCNT_EN,
  32. SD_CMD_INDEX(19) | SD_RESP_R1 | SD_DATA_READ,
  33. SD_CMD_INDEX(20) | SD_RESP_R1b,
  34. SD_CMD_RESERVED(21),
  35. SD_CMD_RESERVED(22),
  36. SD_CMD_INDEX(23) | SD_RESP_R1,
  37. SD_CMD_INDEX(24) | SD_RESP_R1 | SD_DATA_WRITE,
  38. SD_CMD_INDEX(25) | SD_RESP_R1 | SD_DATA_WRITE | SD_CMD_MULTI_BLOCK | SD_CMD_BLKCNT_EN,
  39. SD_CMD_INDEX(26) | SD_RESP_R1 | SD_DATA_WRITE, //add
  40. SD_CMD_INDEX(27) | SD_RESP_R1 | SD_DATA_WRITE,
  41. SD_CMD_INDEX(28) | SD_RESP_R1b,
  42. SD_CMD_INDEX(29) | SD_RESP_R1b,
  43. SD_CMD_INDEX(30) | SD_RESP_R1 | SD_DATA_READ,
  44. SD_CMD_RESERVED(31),
  45. SD_CMD_INDEX(32) | SD_RESP_R1,
  46. SD_CMD_INDEX(33) | SD_RESP_R1,
  47. SD_CMD_RESERVED(34),
  48. SD_CMD_INDEX(35) | SD_RESP_R1, //add
  49. SD_CMD_INDEX(36) | SD_RESP_R1, //add
  50. SD_CMD_RESERVED(37),
  51. SD_CMD_INDEX(38) | SD_RESP_R1b,
  52. SD_CMD_INDEX(39) | SD_RESP_R4, //add
  53. SD_CMD_INDEX(40) | SD_RESP_R5, //add
  54. SD_CMD_INDEX(41) | SD_RESP_R3, //add, mov from harbote
  55. SD_CMD_RESERVED(42) | SD_RESP_R1,
  56. SD_CMD_RESERVED(43),
  57. SD_CMD_RESERVED(44),
  58. SD_CMD_RESERVED(45),
  59. SD_CMD_RESERVED(46),
  60. SD_CMD_RESERVED(47),
  61. SD_CMD_RESERVED(48),
  62. SD_CMD_RESERVED(49),
  63. SD_CMD_RESERVED(50),
  64. SD_CMD_INDEX(51) | SD_RESP_R1 | SD_DATA_READ,
  65. SD_CMD_RESERVED(52),
  66. SD_CMD_RESERVED(53),
  67. SD_CMD_RESERVED(54),
  68. SD_CMD_INDEX(55) | SD_RESP_R3,
  69. SD_CMD_INDEX(56) | SD_RESP_R1 | SD_CMD_ISDATA,
  70. SD_CMD_RESERVED(57),
  71. SD_CMD_RESERVED(58),
  72. SD_CMD_RESERVED(59),
  73. SD_CMD_RESERVED(60),
  74. SD_CMD_RESERVED(61),
  75. SD_CMD_RESERVED(62),
  76. SD_CMD_RESERVED(63)
  77. };
  78. static inline rt_uint32_t read32(rt_uint32_t addr)
  79. {
  80. return (*((volatile rt_uint32_t *)(addr)));
  81. }
  82. static inline void write32(rt_uint32_t addr, rt_uint32_t value)
  83. {
  84. *((volatile rt_uint32_t *)(addr)) = value;
  85. }
  86. rt_err_t sd_int(struct sdhci_pdata_t * pdat, unsigned int mask)
  87. {
  88. unsigned int r;
  89. unsigned int m = mask | INT_ERROR_MASK;
  90. int cnt = 1000000;
  91. while (!(read32(pdat->virt + EMMC_INTERRUPT) & (m | INT_ERROR_MASK)) && cnt--)
  92. DELAY_MICROS(1);
  93. r = read32(pdat->virt + EMMC_INTERRUPT);
  94. if (cnt <= 0 || (r & INT_CMD_TIMEOUT) || (r & INT_DATA_TIMEOUT))
  95. {
  96. write32(pdat->virt + EMMC_INTERRUPT, r);
  97. //qemu maybe can not use sdcard
  98. //rt_kprintf("send cmd/data timeout wait for %x int: %x, status: %x\n",mask, r, read32(pdat->virt + EMMC_STATUS));
  99. //return -RT_ETIMEOUT;
  100. }
  101. else if (r & INT_ERROR_MASK)
  102. {
  103. write32(pdat->virt + EMMC_INTERRUPT, r);
  104. rt_kprintf("send cmd/data error %x -> %x\n",r, read32(pdat->virt + EMMC_INTERRUPT));
  105. return -RT_ERROR;
  106. }
  107. write32(pdat->virt + EMMC_INTERRUPT, mask);
  108. return RT_EOK;
  109. }
  110. rt_err_t sd_status(struct sdhci_pdata_t * pdat, unsigned int mask)
  111. {
  112. int cnt = 500000;
  113. while ((read32(pdat->virt + EMMC_STATUS) & mask) && !(read32(pdat->virt + EMMC_INTERRUPT) & INT_ERROR_MASK) && cnt--)
  114. DELAY_MICROS(1);
  115. if (cnt <= 0)
  116. {
  117. return -RT_ETIMEOUT;
  118. }
  119. else if (read32(pdat->virt + EMMC_INTERRUPT) & INT_ERROR_MASK)
  120. {
  121. return -RT_ERROR;
  122. }
  123. return RT_EOK;
  124. }
  125. static rt_err_t raspi_transfer_command(struct sdhci_pdata_t * pdat, struct sdhci_cmd_t * cmd)
  126. {
  127. rt_uint32_t cmdidx;
  128. rt_err_t ret = RT_EOK;
  129. ret = sd_status(pdat, SR_CMD_INHIBIT);
  130. if (ret)
  131. {
  132. rt_kprintf("ERROR: EMMC busy %d\n", ret);
  133. return ret;
  134. }
  135. cmdidx = sdCommandTable[cmd->cmdidx];
  136. if (cmdidx == 0xFFFFFFFF)
  137. return -RT_EINVAL;
  138. if (cmd->datarw == DATA_READ)
  139. cmdidx |= SD_DATA_READ;
  140. if (cmd->datarw == DATA_WRITE)
  141. cmdidx |= SD_DATA_WRITE;
  142. mmcsd_dbg("transfer cmd %x(%d) %x %x\n", cmdidx, cmd->cmdidx, cmd->cmdarg, read32(pdat->virt + EMMC_INTERRUPT));
  143. write32(pdat->virt + EMMC_INTERRUPT,read32(pdat->virt + EMMC_INTERRUPT));
  144. write32(pdat->virt + EMMC_ARG1, cmd->cmdarg);
  145. write32(pdat->virt + EMMC_CMDTM, cmdidx);
  146. if (cmd->cmdidx == SD_APP_OP_COND)
  147. DELAY_MICROS(1000);
  148. else if ((cmd->cmdidx == SD_SEND_IF_COND) || (cmd->cmdidx == APP_CMD))
  149. DELAY_MICROS(100);
  150. ret = sd_int(pdat, INT_CMD_DONE);
  151. if (ret)
  152. {
  153. return ret;
  154. }
  155. if (cmd->resptype & RESP_MASK)
  156. {
  157. if (cmd->resptype & RESP_R2)
  158. {
  159. rt_uint32_t resp[4];
  160. resp[0] = read32(pdat->virt + EMMC_RESP0);
  161. resp[1] = read32(pdat->virt + EMMC_RESP1);
  162. resp[2] = read32(pdat->virt + EMMC_RESP2);
  163. resp[3] = read32(pdat->virt + EMMC_RESP3);
  164. if (cmd->resptype == RESP_R2)
  165. {
  166. cmd->response[0] = resp[3]<<8 |((resp[2]>>24)&0xff);
  167. cmd->response[1] = resp[2]<<8 |((resp[1]>>24)&0xff);
  168. cmd->response[2] = resp[1]<<8 |((resp[0]>>24)&0xff);
  169. cmd->response[3] = resp[0]<<8 ;
  170. }
  171. else
  172. {
  173. cmd->response[0] = resp[0];
  174. cmd->response[1] = resp[1];
  175. cmd->response[2] = resp[2];
  176. cmd->response[3] = resp[3];
  177. }
  178. }
  179. else
  180. cmd->response[0] = read32(pdat->virt + EMMC_RESP0);
  181. }
  182. mmcsd_dbg("response: %x: %x %x %x %x (%x, %x)\n", cmd->resptype, cmd->response[0], cmd->response[1], cmd->response[2], cmd->response[3], read32(pdat->virt + EMMC_STATUS),read32(pdat->virt + EMMC_INTERRUPT));
  183. return ret;
  184. }
  185. static rt_err_t read_bytes(struct sdhci_pdata_t * pdat, rt_uint32_t * buf, rt_uint32_t blkcount, rt_uint32_t blksize)
  186. {
  187. int c = 0;
  188. rt_err_t ret;
  189. int d;
  190. while (c < blkcount)
  191. {
  192. if ((ret = sd_int(pdat, INT_READ_RDY)))
  193. {
  194. rt_kprintf("timeout happens when reading block %d\n",c);
  195. return ret;
  196. }
  197. for (d=0; d < blksize / 4; d++)
  198. if (read32(pdat->virt + EMMC_STATUS) & SR_READ_AVAILABLE)
  199. buf[d] = read32(pdat->virt + EMMC_DATA);
  200. c++;
  201. buf += blksize / 4;
  202. }
  203. return RT_EOK;
  204. }
  205. static rt_err_t write_bytes(struct sdhci_pdata_t * pdat, rt_uint32_t * buf, rt_uint32_t blkcount, rt_uint32_t blksize)
  206. {
  207. int c = 0;
  208. rt_err_t ret;
  209. int d;
  210. while (c < blkcount)
  211. {
  212. if ((ret = sd_int(pdat, INT_WRITE_RDY)))
  213. {
  214. return ret;
  215. }
  216. for (d=0; d < blksize / 4; d++)
  217. write32(pdat->virt + EMMC_DATA, buf[d]);
  218. c++;
  219. buf += blksize / 4;
  220. }
  221. if ((ret = sd_int(pdat, INT_DATA_DONE)))
  222. {
  223. return ret;
  224. }
  225. return RT_EOK;
  226. }
  227. static rt_err_t raspi_transfer_data(struct sdhci_pdata_t * pdat, struct sdhci_cmd_t * cmd, struct sdhci_data_t * dat)
  228. {
  229. rt_uint32_t dlen = (rt_uint32_t)(dat->blkcnt * dat->blksz);
  230. rt_err_t ret = sd_status(pdat, SR_DAT_INHIBIT);
  231. if (ret)
  232. {
  233. rt_kprintf("ERROR: EMMC busy\n");
  234. return ret;
  235. }
  236. if (dat->blkcnt > 1)
  237. {
  238. struct sdhci_cmd_t newcmd;
  239. newcmd.cmdidx = SET_BLOCK_COUNT;
  240. newcmd.cmdarg = dat->blkcnt;
  241. newcmd.resptype = RESP_R1;
  242. ret = raspi_transfer_command(pdat, &newcmd);
  243. if (ret) return ret;
  244. }
  245. if(dlen < 512)
  246. {
  247. write32(pdat->virt + EMMC_BLKSIZECNT, dlen | 1 << 16);
  248. }
  249. else
  250. {
  251. write32(pdat->virt + EMMC_BLKSIZECNT, 512 | (dat->blkcnt) << 16);
  252. }
  253. if (dat->flag & DATA_DIR_READ)
  254. {
  255. cmd->datarw = DATA_READ;
  256. ret = raspi_transfer_command(pdat, cmd);
  257. if (ret) return ret;
  258. mmcsd_dbg("read_block %d, %d\n", dat->blkcnt, dat->blksz );
  259. ret = read_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz);
  260. }
  261. else if (dat->flag & DATA_DIR_WRITE)
  262. {
  263. cmd->datarw = DATA_WRITE;
  264. ret = raspi_transfer_command(pdat, cmd);
  265. if (ret) return ret;
  266. mmcsd_dbg("write_block %d, %d", dat->blkcnt, dat->blksz );
  267. ret = write_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz);
  268. }
  269. return ret;
  270. }
  271. static rt_err_t sdhci_transfer(struct sdhci_t * sdhci, struct sdhci_cmd_t * cmd, struct sdhci_data_t * dat)
  272. {
  273. struct sdhci_pdata_t * pdat = (struct sdhci_pdata_t *)sdhci->priv;
  274. if (!dat)
  275. return raspi_transfer_command(pdat, cmd);
  276. return raspi_transfer_data(pdat, cmd, dat);
  277. }
  278. static void mmc_request_send(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
  279. {
  280. struct sdhci_t *sdhci = (struct sdhci_t *)host->private_data;
  281. struct sdhci_cmd_t cmd;
  282. struct sdhci_cmd_t stop;
  283. struct sdhci_data_t dat;
  284. rt_memset(&cmd, 0, sizeof(struct sdhci_cmd_t));
  285. rt_memset(&stop, 0, sizeof(struct sdhci_cmd_t));
  286. rt_memset(&dat, 0, sizeof(struct sdhci_data_t));
  287. cmd.cmdidx = req->cmd->cmd_code;
  288. cmd.cmdarg = req->cmd->arg;
  289. cmd.resptype =resp_type(req->cmd);
  290. if (req->data)
  291. {
  292. dat.buf = (rt_uint8_t *)req->data->buf;
  293. dat.flag = req->data->flags;
  294. dat.blksz = req->data->blksize;
  295. dat.blkcnt = req->data->blks;
  296. req->cmd->err = sdhci_transfer(sdhci, &cmd, &dat);
  297. }
  298. else
  299. {
  300. req->cmd->err = sdhci_transfer(sdhci, &cmd, RT_NULL);
  301. }
  302. req->cmd->resp[3] = cmd.response[3];
  303. req->cmd->resp[2] = cmd.response[2];
  304. req->cmd->resp[1] = cmd.response[1];
  305. req->cmd->resp[0] = cmd.response[0];
  306. if (req->stop)
  307. {
  308. stop.cmdidx = req->stop->cmd_code;
  309. stop.cmdarg = req->stop->arg;
  310. cmd.resptype =resp_type(req->stop);
  311. req->stop->err = sdhci_transfer(sdhci, &stop, RT_NULL);
  312. }
  313. mmcsd_req_complete(host);
  314. }
  315. rt_int32_t mmc_card_status(struct rt_mmcsd_host *host)
  316. {
  317. return 0;
  318. }
  319. void mmc_enable_irq(struct rt_mmcsd_host *host, rt_int32_t en)
  320. {
  321. }
  322. static rt_err_t sdhci_detect(struct sdhci_t * sdhci)
  323. {
  324. return RT_EOK;
  325. }
  326. static rt_err_t sdhci_setwidth(struct sdhci_t * sdhci, rt_uint32_t width)
  327. {
  328. rt_uint32_t temp = 0;
  329. struct sdhci_pdata_t * pdat = (struct sdhci_pdata_t *)sdhci->priv;
  330. if (width == MMCSD_BUS_WIDTH_4)
  331. {
  332. temp = read32((pdat->virt + EMMC_CONTROL0));
  333. temp |= C0_HCTL_HS_EN;
  334. temp |= C0_HCTL_DWITDH; // always use 4 data lines:
  335. write32((pdat->virt + EMMC_CONTROL0), temp);
  336. }
  337. return RT_EOK;
  338. }
  339. static rt_uint32_t sdhci_getdivider(rt_uint32_t sdHostVer, rt_uint32_t freq)
  340. {
  341. rt_uint32_t divisor;
  342. rt_uint32_t closest = 41666666 / freq;
  343. rt_uint32_t shiftcount = __rt_fls(closest - 1);
  344. if (shiftcount > 0) shiftcount--;
  345. if (shiftcount > 7) shiftcount = 7;
  346. if (sdHostVer > HOST_SPEC_V2)
  347. divisor = closest;
  348. else
  349. divisor = (1 << shiftcount);
  350. if (divisor <= 2)
  351. {
  352. divisor = 2;
  353. shiftcount = 0;
  354. }
  355. rt_uint32_t hi = 0;
  356. if (sdHostVer > HOST_SPEC_V2)
  357. hi = (divisor & 0x300) >> 2;
  358. rt_uint32_t lo = (divisor & 0x0ff);
  359. rt_uint32_t cdiv = (lo << 8) + hi;
  360. return cdiv;
  361. }
  362. static rt_err_t sdhci_setclock(struct sdhci_t * sdhci, rt_uint32_t clock)
  363. {
  364. rt_uint32_t temp = 0;
  365. rt_uint32_t sdHostVer = 0;
  366. int count = 100000;
  367. struct sdhci_pdata_t * pdat = (struct sdhci_pdata_t *)(sdhci->priv);
  368. while ((read32(pdat->virt + EMMC_STATUS) & (SR_CMD_INHIBIT | SR_DAT_INHIBIT)) && (--count))
  369. DELAY_MICROS(1);
  370. if (count <= 0)
  371. {
  372. rt_kprintf("EMMC: Set clock: timeout waiting for inhibit flags. Status %08x.\n",read32(pdat->virt + EMMC_STATUS));
  373. return -RT_ERROR;
  374. }
  375. // Switch clock off.
  376. temp = read32((pdat->virt + EMMC_CONTROL1));
  377. temp &= ~C1_CLK_EN;
  378. write32((pdat->virt + EMMC_CONTROL1),temp);
  379. DELAY_MICROS(10);
  380. // Request the new clock setting and enable the clock
  381. temp = read32(pdat->virt + EMMC_SLOTISR_VER);
  382. sdHostVer = (temp & HOST_SPEC_NUM) >> HOST_SPEC_NUM_SHIFT;
  383. int cdiv = sdhci_getdivider(sdHostVer, clock);
  384. temp = read32((pdat->virt + EMMC_CONTROL1));
  385. temp = (temp & 0xffff003f) | cdiv;
  386. write32((pdat->virt + EMMC_CONTROL1),temp);
  387. DELAY_MICROS(10);
  388. // Enable the clock.
  389. temp = read32(pdat->virt + EMMC_CONTROL1);
  390. temp |= C1_CLK_EN;
  391. write32((pdat->virt + EMMC_CONTROL1),temp);
  392. DELAY_MICROS(10);
  393. // Wait for clock to be stable.
  394. count = 10000;
  395. while (!(read32(pdat->virt + EMMC_CONTROL1) & C1_CLK_STABLE) && count--)
  396. DELAY_MICROS(10);
  397. if (count <= 0)
  398. {
  399. rt_kprintf("EMMC: ERROR: failed to get stable clock %d.\n", clock);
  400. return -RT_ERROR;
  401. }
  402. mmcsd_dbg("set stable clock %d.\n", clock);
  403. return RT_EOK;
  404. }
  405. static void mmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
  406. {
  407. struct sdhci_t * sdhci = (struct sdhci_t *)host->private_data;
  408. sdhci_setclock(sdhci, io_cfg->clock);
  409. sdhci_setwidth(sdhci, io_cfg->bus_width);
  410. }
  411. static const struct rt_mmcsd_host_ops ops =
  412. {
  413. mmc_request_send,
  414. mmc_set_iocfg,
  415. RT_NULL,
  416. RT_NULL,
  417. };
  418. static void sdmmc_gpio_init()
  419. {
  420. // int pin;
  421. // bcm283x_gpio_fsel(47,BCM283X_GPIO_FSEL_INPT);
  422. // bcm283x_gpio_set_pud(47, BCM283X_GPIO_PUD_UP);
  423. // bcm283x_peri_set_bits(BCM283X_GPIO_BASE + BCM283X_GPIO_GPHEN1, 1<<15, 1<<15);
  424. // for (pin = 53; pin >= 48; pin--)
  425. // {
  426. // bcm283x_gpio_fsel(pin, BCM283X_GPIO_FSEL_ALT3);
  427. // bcm283x_gpio_set_pud(pin, BCM283X_GPIO_PUD_UP);
  428. // }
  429. }
  430. static rt_err_t reset_emmc(struct sdhci_pdata_t * pdat){
  431. rt_uint32_t temp;
  432. int cnt;
  433. write32((pdat->virt + EMMC_CONTROL0),0);
  434. temp = read32((pdat->virt + EMMC_CONTROL1));
  435. temp |= C1_SRST_HC;
  436. write32((pdat->virt + EMMC_CONTROL1),temp);
  437. cnt = 10000;
  438. do
  439. {
  440. DELAY_MICROS(10);
  441. }
  442. while ((read32((pdat->virt + EMMC_CONTROL1)) & C1_SRST_HC) && cnt--);
  443. if (cnt <= 0)
  444. {
  445. rt_kprintf("ERROR: failed to reset EMMC\n");
  446. return -RT_ERROR;
  447. }
  448. temp = read32((pdat->virt + EMMC_CONTROL1));
  449. temp |= C1_CLK_INTLEN | C1_TOUNIT_MAX;
  450. write32((pdat->virt + EMMC_CONTROL1),temp);
  451. DELAY_MICROS(10);
  452. return RT_EOK;
  453. }
  454. #ifdef RT_MMCSD_DBG
  455. void dump_registers(struct sdhci_pdata_t * pdat){
  456. rt_kprintf("EMMC registers:");
  457. int i = EMMC_ARG2;
  458. for (; i <= EMMC_CONTROL2; i += 4)
  459. rt_kprintf("\t%x:%x\n", i, read32(pdat->virt + i));
  460. rt_kprintf("\t%x:%x\n", 0x50, read32(pdat->virt + 0x50));
  461. rt_kprintf("\t%x:%x\n", 0x70, read32(pdat->virt + 0x70));
  462. rt_kprintf("\t%x:%x\n", 0x74, read32(pdat->virt + 0x74));
  463. rt_kprintf("\t%x:%x\n", 0x80, read32(pdat->virt + 0x80));
  464. rt_kprintf("\t%x:%x\n", 0x84, read32(pdat->virt + 0x84));
  465. rt_kprintf("\t%x:%x\n", 0x88, read32(pdat->virt + 0x88));
  466. rt_kprintf("\t%x:%x\n", 0x8c, read32(pdat->virt + 0x8c));
  467. rt_kprintf("\t%x:%x\n", 0x90, read32(pdat->virt + 0x90));
  468. rt_kprintf("\t%x:%x\n", 0xf0, read32(pdat->virt + 0xf0));
  469. rt_kprintf("\t%x:%x\n", 0xfc, read32(pdat->virt + 0xfc));
  470. }
  471. #endif
  472. int raspi_sdmmc_init(void)
  473. {
  474. rt_uint32_t virt;
  475. struct rt_mmcsd_host * host = RT_NULL;
  476. struct sdhci_pdata_t * pdat = RT_NULL;
  477. struct sdhci_t * sdhci = RT_NULL;
  478. #ifdef BSP_USING_SDIO0
  479. host = mmcsd_alloc_host();
  480. if (!host)
  481. {
  482. rt_kprintf("alloc host failed");
  483. goto err;
  484. }
  485. sdhci = rt_malloc(sizeof(struct sdhci_t));
  486. if (!sdhci)
  487. {
  488. rt_kprintf("alloc sdhci failed");
  489. goto err;
  490. }
  491. rt_memset(sdhci, 0, sizeof(struct sdhci_t));
  492. sdmmc_gpio_init();
  493. virt = MMC0_BASE_ADDR;
  494. pdat = (struct sdhci_pdata_t *)rt_malloc(sizeof(struct sdhci_pdata_t));
  495. RT_ASSERT(pdat != RT_NULL);
  496. pdat->virt = (rt_uint32_t)virt;
  497. reset_emmc(pdat);
  498. sdhci->name = "sd0";
  499. sdhci->voltages = VDD_33_34;
  500. sdhci->width = MMCSD_BUSWIDTH_4;
  501. sdhci->clock = 200 * 1000 * 1000;
  502. sdhci->removeable = RT_TRUE;
  503. sdhci->detect = sdhci_detect;
  504. sdhci->setwidth = sdhci_setwidth;
  505. sdhci->setclock = sdhci_setclock;
  506. sdhci->transfer = sdhci_transfer;
  507. sdhci->priv = pdat;
  508. host->ops = &ops;
  509. host->freq_min = 400000;
  510. host->freq_max = 50000000;
  511. host->valid_ocr = VDD_32_33 | VDD_33_34;
  512. host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_HIGHSPEED | MMCSD_SUP_SDIO_IRQ | MMCSD_BUSWIDTH_4;
  513. host->max_seg_size = 2048;
  514. host->max_dma_segs = 10;
  515. host->max_blk_size = 512;
  516. host->max_blk_count = 4096;
  517. host->private_data = sdhci;
  518. write32((pdat->virt + EMMC_IRPT_EN),0xffffffff);
  519. write32((pdat->virt + EMMC_IRPT_MASK),0xffffffff);
  520. #ifdef RT_MMCSD_DBG
  521. dump_registers(pdat);
  522. #endif
  523. mmcsd_change(host);
  524. #endif
  525. return RT_EOK;
  526. err:
  527. if (host) rt_free(host);
  528. if (sdhci) rt_free(sdhci);
  529. return -RT_EIO;
  530. }
  531. INIT_DEVICE_EXPORT(raspi_sdmmc_init);